Superdense coding: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
m Alter: pages. Formatted dashes. | You can use this bot yourself. Report bugs here. | Activated by User:AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked
m Fixing the ___location of periods / full stops
Line 133:
 
== Experimental ==
The protocol of superdense coding has been actualized in several experiments using different systems to varying levels of channel capacity and fidelities. In 2004, trapped beryllium 9 ions were used in a maximally entangled state to achieve a channel capacity of 1.16 with a fidelity of 0.85.<ref name="Schaetz2004">Schaetz, T., Barrett, M. D., Leibfried, D., Chiaverini, J., Britton, J., Itano, W. M., … Wineland, D. J. (2004). Quantum Dense Coding with Atomic Qubits. Physical Review Letters, 93(4).</ref>. In 2017, a channel capacity of 1.665 was achieved with a fidelity of 0.87 through optical fibers.<ref name="William2017">Williams, B. P., Sadlier, R. J., & Humble, T. S. (2017). Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements. Physical Review Letters, 118(5).</ref>. High dimensional [[ququarts]] (states formed in photon pairs by non-degenerate spontaneous parametric down-conversion) were used to reach a channel capacity of 2.09 (with a limit of 2.32) with a fidelity of 0.98.<ref name="Hu2018">Hu, X.-M., Guo, Y., Liu, B.-H., Huang, Y.-F., Li, C.-F., & Guo, G.-C. (2018). Beating the channel capacity limit for superdense coding with entangled ququarts. Science Advances, 4(7), eaat9304.</ref>. Nuclear Magnetic Resonance (NMR) has also been used to share among three parties.<ref name="Wei2004">Wei, D., Yang, X., Luo, J., Sun, X., Zeng, X., & Liu, M. (2004). NMR experimental implementation of three-parties quantum superdense coding. Chinese Science Bulletin, 49(5), 423–426.</ref>.
 
==References==