Lehmer–Schur algorithm: Difference between revisions

Content deleted Content added
m task, replaced: Journal für die reine und angewandte Mathematik (Crelle's Journal) → Journal für die reine und angewandte Mathematik
OAbot (talk | contribs)
m Open access bot: hdl added to citation with #oabot.
Line 3:
==Schur-Cohn algorithm==
This [[algorithm]] allows to find the distribution of the roots of a complex polynomial with respect to the [[unit circle]] in the complex plane.
<ref>{{cite journal |last1=Cohn |first1=A |title=Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. |journal=Math. Z. |date=1922 |volume=14 |pages=110–148 |doi=10.1007/BF01215894 |url=http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN266833020_0014&DMDID=dmdlog10|hdl=10338.dmlcz/102550 |hdl-access=free }}</ref>
<ref name="Henrici">{{cite book |last1=Henrici |first1=Peter |title=Applied and computational complex analysis. Volume I: Power series- integration-conformal mapping-___location of zeros. |date=1988 |publisher=New York etc.: John Wiley |isbn=0-471-60841-6 |pages=xv + 682 |edition= Repr. of the orig., publ. 1974 by John Wiley \& Sons Ltd., Paperback}}</ref>
<ref>{{cite book |last1=Marden |first1=Morris |title=The geometry of the zeros of a polynomial in a complex variable. |date=1949 |publisher=Mathematical Surveys. No. 3. New York: American Mathematical Society (AMS). |page=148 }}</ref>