Bartels–Stewart algorithm: Difference between revisions

Content deleted Content added
The algorithm: Changed confusing sentence (all blocks are not square, only the diagonal ones)
OAbot (talk | contribs)
m Open access bot: hdl added to citation with #oabot.
Line 1:
{{short description|Algorithm in numerical linear algebra}}
In [[numerical linear algebra]], the '''Bartels–Stewart algorithm''' is used to numerically solve the [[Sylvester equation|Sylvester matrix equation]] <math> AX - XB = C</math>. Developed by R.H. Bartels and G.W. Stewart in 1971<ref name=":0">{{Cite journal|last=Bartels|first=R. H.|last2=Stewart|first2=G. W.|date=1972|title=Solution of the matrix equation AX + XB = C [F4]|journal=Communications of the ACM|volume=15|issue=9|pages=820–826|doi=10.1145/361573.361582|issn=0001-0782}}</ref>, it was the first [[numerical stability|numerically stable]] method that could be systematically applied to solve such equations. The algorithm works by using the [[Schur decomposition|real Schur decompositions]] of <math>A</math> and <math>B</math> to transform <math> AX - XB = C</math> into a triangular system that can then be solved using forward or backward substitution. In 1979, [[Gene H. Golub|G. Golub]], [[Charles F. Van Loan|C. Van Loan]] and S. Nash introduced an improved version of the algorithm<ref name=":1">{{Cite journal|last=Golub|first=G.|last2=Nash|first2=S.|last3=Loan|first3=C. Van|date=1979|title=A Hessenberg–Schur method for the problem AX + XB= C|journal=IEEE Transactions on Automatic Control|volume=24|issue=6|pages=909–913|doi=10.1109/TAC.1979.1102170|issn=0018-9286|hdl=1813/7472|hdl-access=free}}</ref>, known as the Hessenberg–Schur algorithm. It remains a standard approach for solving [[Sylvester equation| Sylvester equations]] when <math>X</math> is of small to moderate size.
 
== The algorithm ==