Content deleted Content added
Citation bot (talk | contribs) Alter: date. Add: date. Removed URL that duplicated unique identifier. Removed parameters. | You can use this bot yourself. Report bugs here. | Activated by AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked |
|||
Line 47:
* The [[definite integral]] of a step function is a [[piecewise linear function]].
* The [[Lebesgue integral]] of a step function <math>\textstyle f = \sum\limits_{i=0}^n \alpha_i \chi_{A_i}</math> is <math>\textstyle \int f\,dx = \sum\limits_{i=0}^n \alpha_i \ell(A_i),\,</math> where <math>\textstyle\ell(A)</math> is the length of the interval <math>A,</math> and it is assumed here that all intervals <math>A_i</math> have finite length. In fact, this equality (viewed as a definition) can be the first step in constructing the Lebesgue integral.<ref>{{Cite book | author=Weir, Alan J | authorlink= | title=Lebesgue integration and measure | date= 10 May 1973| publisher=Cambridge University Press, 1973 | ___location= | isbn=0-521-09751-7 |chapter= 3}}</ref>
* A [[discrete random variable]] is sometimes defined as a [[random variable]] whose [[cumulative distribution function]] is piecewise constant.<ref name=":0">{{Cite book|title=Introduction to Probability|last=[[Dimitri_Bertsekas|Bertsekas]]|first=Dimitri P.|date=2002|publisher=Athena Scientific|others=[[John_Tsitsiklis|Tsitsiklis, John N.
==See also==
|