Content deleted Content added
m Journal cites:, templated 16 journal cites |
|||
Line 4:
==History==
Interactive computing technology was primarily conceived by academics, but the use of technology in education has historically been defined by contemporary research trends. The earliest instances of software in instruction drilled students using the [[behaviorism|behaviorist]] method that was popular throughout the mid-twentieth century. In the 1970s as [[Cognitivism (psychology)|cognitivism]] gained traction with educators, designers began to envision learning technology that employed artificial intelligence models that could adapt to individual learners.<ref>Koschmann, T. (1996) CSCL: Theory and practice of an emerging paradigm Mahwah, NJ: Lawrence Erlbaum.</ref> Computer-supported collaborative learning emerged as a strategy rich with research implications for the growing philosophies of [[Constructivism (learning theory)|constructivism]] and [[social cognitivism]].<ref name="resta">{{cite journal | last1 = Resta
Though studies in collaborative learning and technology took place throughout the 1980s and 90s, the earliest public workshop directly addressing CSCL was "Joint Problem Solving and [[Microcomputers]]" which took place in [[San Diego]] in 1983. Six years later in 1989, the term "computer-supported collaborative learning" was used in a [[NATO]]-sponsored workshop in [[Maratea]], Italy.<ref name="stahl" /><ref name="bannon">Bannon, Liam J. (1989). [http://www.ul.ie/~idc/library/papersreports/LiamBannon/12/LBMarat.html Issues in computer supported collaborative learning.] {{webarchive|url=https://web.archive.org/web/20110126144330/http://www.ul.ie/~idc/library/papersreports/LiamBannon/12/LBMarat.html |date=2011-01-26 }} Chapter to appear in Proceedings of NATO Advanced Workshop on Computer-Supported Collaborative Learning (Claire O'Malley, Editor) held in Maratea, Italy, Sept. 1989.</ref> A biannual CSCL conference series began in 1995. At the 2002 and 2003 CSCL conferences, the International Society of the Learning Sciences (ISLS) was established to run the CSCL and ICLS conference series and the ''International Journal of Computer-Supported Collaborative Learning'' (''ijCSCL'') and JLS journals.<ref>International Society for the Learning Sciences. (2010). [http://www.isls.org/conferences.html Conferences] {{webarchive|url=https://web.archive.org/web/20110525061618/http://www.isls.org/conferences.html |date=2011-05-25 }}. Retrieved 10/20/2010.</ref>
Line 20:
[[Cooperative learning]], though different in some ways from collaborative learning, also contributes to the success of teams in CSCL environments. The distinction can be stated as: cooperative learning focuses on the effects of group interaction on individual learning whereas collaborative learning is more concerned with the cognitive processes at the group unit of analysis such as shared meaning making and the joint problem space. The five elements for effective cooperative groups identified by the work of Johnson and Johnson are positive interdependence, individual accountability, promotive interaction, [[social skills]], and group processing.<ref>Johnson, D., Johnson, R., & Holubec, E. (2002). Circles of learning: Cooperation in the classroom. Edina, MN: Interaction Book Company, p. 95-118, {{ISBN|0-939603-12-8}}.</ref> Because of the inherent relationship between cooperation and collaboration, understanding what encourages successful cooperation is essential to CSCL research.
In the late 1980s and early 1990s, Marlene Scardamalia and Carl Bereiter wrote seminal articles leading to the development of key CSCL concepts: knowledge-building communities and knowledge-building discourse, intentional learning, and expert processes. Their work led to an early collaboration-enabling technology known as the Computer Supported Intentional Learning Environment (CSILE).<ref>{{cite journal | last1 = Scardamalia
Other learning theories that provide a foundation for CSCL include [[distributed cognition]], [[problem-based learning]], [[group cognition]], cognitive apprenticeship, and situated learning. Each of these learning theories focuses on the social aspect of learning and knowledge building, and recognizes that learning and knowledge building involve inter-personal activities including conversation, argument, and negotiation.<ref name="resta" />
Line 36:
Currently, CSCL is used in instructional plans in classrooms both traditional and online from primary school to post-graduate institutions. Like any other instructional activity, it has its own prescribed practices and strategies which educators are encouraged to employ in order to use it effectively. Because its use is so widespread, there are innumerable scenarios in the use of CSCL, but there are several common strategies that provide a foundation for group cognition.
One of the most common approaches to CSCL is [[collaborative writing]]. Though the final product can be anything from a research paper, a Wikipedia entry, or a short story, the process of planning and writing together encourages students to express their ideas and develop a group understanding of the subject matter.<ref>Heimbuch, S., & Bodemer, D. (2015). Let's Talk about Talks: Supporting Knowledge Exchange Processes on Wiki Discussion Pages. In ''AAAI Technical Report on Wikipedia, a Social Pedia: Research Challenges and Opportunities (ICWSM-15)'' (Vol. WS-15-19), 56–61. Palo Alto, USA: AAAI Press.</ref> Tools like [[blogs]], [[interactive whiteboards]], and custom spaces that combine free writing with communication tools can be used to share work, form ideas, and write synchronously.<ref>{{cite journal | last1 = Onrubia
Technology-mediated discourse refers to debates, discussions, and other social learning techniques involving the examination of a theme using technology. For example, wikis are a way to encourage discussion among learners, but other common tools include mind maps, survey systems, and simple message boards. Like collaborative writing, technology-mediated discourse allows participants that may be separated by time and distance to engage in conversations and build knowledge together.<ref name="wikis" /><ref>{{cite journal | last1 = Asterhan
Group exploration refers to the shared discovery of a place, activity, environment or topic among two or more people. Students do their exploring in an online environment, use technology to better understand a physical area, or reflect on their experiences together through the Internet. [[Virtual worlds]] like [[Second Life]] and [[Whyville]] as well as synchronous communication tools like [[Skype]] may be used for this kind of learning.<ref>{{cite journal | last1 = Nelson
Problem-based learning is a popular instructional activity that lends itself well to CSCL because of the social implications of problem solving. Complex problems call for rich group interplay that encourages collaboration and creates movement toward a clear goal.<ref name="lu">{{cite journal | last1 = Lu
[[Project-based learning]] is similar to problem-based learning in that it creates impetus to establish team roles and set goals. The need for collaboration is also essential for any project and encourages team members to build experience and knowledge together. Although there are many advantages to using software that has been specifically developed to support collaborative learning or project-based learning in a particular ___domain, any file sharing or communication tools can be used to facilitate CSCL in problem- or project-based environments.<ref>{{cite journal | last1 = Blumenfeld
When [[Web 2.0]] applications (wikies, blogs, RSS feed, collaborative writing, video sharing, social networks, etc.) are used for computer-supported collaborative learning specific strategies should be used for their implementation, especially regarding (1) adoption by teachers and students; (2) usability and quality in use issues; (3) technology maintenance; (4) pedagogy and instructional design; (5) social interaction between students; (6) privacy issues; and (7) information/system security.<ref>Bubas, G., Orehovacki, T., Coric, A. (2011). Strategies for implementation of Web 2.0 tools in academic education [https://www.researchgate.net/publication/307915719_Strategies_for_implementation_of_Web_20_tools_in_academic_education]. 17th European University Information Systems International Congress, EUNIS 2011, Dublin, Ireland.</ref>
Line 52:
Though the focus in CSCL is on individuals collaborating with their peers, teachers still have a vital role in facilitating learning. Most obviously, the instructor must introduce the CSCL activity in a thoughtful way that contributes to an overarching design plan for the course. The design should clearly define the learning outcomes and [[Assessment in computer-supported collaborative learning|assessments]] for the activity. In order to assure that learners are aware of these objectives and that they are eventually met, proper administration of both resources and expectations is necessary to avoid learner overload. Once the activity has begun, the teacher is charged with kick-starting and monitoring discussion to facilitate learning. He or she must also be able to mitigate technical issues for the class. Lastly, the instructor must engage in [[Assessment in computer-supported collaborative learning|assessment]], in whatever form the design calls for, in order to ensure objectives have been met for all students.<ref>Shank, P (2008). [http://www.learningpeaks.com/instrcomp.pdf Competencies for online instructors.] {{webarchive|url=https://web.archive.org/web/20080703164002/http://www.learningpeaks.com/instrcomp.pdf |date=2008-07-03 }} Learning Peaks, Retrieved October 16, 2008.</ref>
Without the proper structure, any CSCL strategy can lose its effectiveness. It is the responsibility of the teacher to make students aware of what their goals are, how they should be interacting, potential technological concerns, and the time-frame for the exercise. This framework should enhance the experience for learners by supporting collaboration and creating opportunities for the construction of knowledge.<ref>{{cite journal | last1 = Kobbe
==Effects==
Line 75:
=== History ===
The advent of computer-supported collaborative learning (CSCL) as an instructional strategy for [[second language acquisition]] can be traced back to the 1990s. During that time, the internet was growing rapidly, which was one of the key factors that facilitated the process.<ref>{{cite journal | last1 = Warschauer
During the establishment of wikis in the 2000s, global research began to emerge regarding their effectiveness in promoting second language acquisition. Some of this research focused on more specific areas such as [[systemic-functional linguistics]], [[humanistic education]], [[experiental learning]], and [[psycholinguistics]]. For example, in 2009 Yu-Ching Chen performed a study to determine the overall effectiveness of wikis in an English as a second language class in Taiwan.<ref>Chen, Y. (2009). The effect of applying wikis in an English as a foreign language (EFL) class in Taiwan. Dissertation Abstracts International, A: The Humanities and Social Sciences, 69(11), 4300.</ref> Another example is a 2009 study by Greg Kessler in which pre-service, non-native English speaker teachers in a Mexican university were given the task to collaborate on a wiki, which served as the final product for one of their courses. In this study, emphasis was placed on the level of grammatical accuracy achieved by the students throughout the course of the task.<ref>Kessler, G. (2009). Student-Initiated Attention to Form in Wiki-Based Collaborative Writing. Language Learning & Technology, 13(1), 79-95.</ref>
Line 93:
CSCL environments are generally valued for the potential to promote collaboration in cross-cultural learning communities. Based on [[social constructivist]] views of learning,<ref>Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes.</ref> many CSCL environments fundamentally emphasize learning as the co-construction of knowledge through the computer-mediated interaction of multivoiced community members. Computer-mediation of the learning process has been found to afford consideration of alternative viewpoints in multicultural/multilingual learning communities.<ref>Atsumi, T., Misumi, J., Smith, P., Peter, B., Peterson, M., Tayeb, M., … Tanzer, N. (1989). Groups, leadership and social influence. Recent Advances in Social Psychology: An International Perspective, 369–428.</ref> When compared to traditional face-to-face environments, computer-mediated learning environments have been shown to result in more equal levels of participation for ESL students in courses with native English speakers.<ref>Warschauer, M. (2005). Comparing face-to-face and electronic discussion in the second language classroom. CALICO Journal, 13(2-3), 7–26.</ref> Language barriers for non-native speakers tend to detract from equal participation in general,<ref>Gunawardena, C. N., Nolla, A. C., Wilson, P. L., Lopez‐Islas, J. R., Ramirez‐Angel, N., & Megchun‐Alpizar, R. M. (2001). A cross‐cultural study of group process and development in online conferences. Distance Education, 22(1), 85–121.</ref> and this can be alleviated to some extent through the use of technologies which support asynchronous modes of written communication.<ref>Ku, H.-Y., & Lohr, L. L. (2003). A case study of Chinese student's attitudes toward their first online learning experience. Educational Technology Research and Development, 51(3), 95–102.</ref>
Online learning environments however tend to reflect the cultural, [[epistemological]], and [[pedagogical]] goals and assumptions of their designers.<ref>McLoughlin, C., & Oliver, R. (2000). Designing learning environments for cultural inclusivity: A case study of indigenous online learning at tertiary level. ''Australasian Journal of Educational Technology'', 16(1). Retrieved from http://ascilite.org.au/ajet/submission/index.php/AJET/article/view/1822</ref> In computer-supported collaborative learning environments, there is evidence that cultural background may impact learner motivation, attitude towards learning and e-learning, learning preference (style), computer usage, learning behavior and strategies, academic achievement, communication, participation, knowledge transfer, sharing and collaborative learning.<ref name="doi.org"/> Studies variously comparing Asian, American and Danish and Finnish learners have suggested that learners from different cultures exhibit different interaction patterns with their peers and teachers in online.<ref>{{cite journal | last1 = Kim
==== Design implications ====
A "multiple cultural model" of [[instructional design]] emphasizes variability and flexibility in the process of designing for multicultural inclusiveness, focusing on the development of learning environments reflecting the multicultural realities of society, include multiple ways of teaching and learning, and promote equity of outcomes.<ref>Henderson, L. (1994). Reeves' pedagogic model of interactive learning systems and cultural contextuality (pp. 189–203). Presented at the Proceedings of the second international interactive multimedia symposium, Promaco Conventions Pty. Ltd. Perth.</ref><ref>{{cite journal | last1 = Henderson
== Dyslexia in Computer-Supported Collaborative Learning ==
Line 122:
=== 508 Compliance & the implications for Educators ===
Educators that choose to use the CSCL environment must be aware of [https://www.section508.gov/content/learn 508 compliance] and its legal implications. “In the U.S., the criteria for designing Web pages accessibly are provided by two major sets: the W3C’s [[Web Content Accessibility Guidelines|Web Accessibility Guidelines]] (WCAG) and the design standards issued under U.S. federal law, [[Section 508 Amendment to the Rehabilitation Act of 1973|Section 508 of the Rehabilitation Act]], as amended in 1998.1 Features of accessible design include, among others, the provision of ALT tags for nontextual elements, such as images, animations and image map hot spots; meaningful link text; logical and persistent page organization, and the inclusion of skip navigation links."<ref>Axel Schmetzke & David Comeaux (2009) Accessibility Trends among Academic Library and Library School Web Sites in the USA and Canada, ''Journal of Access Services'', 6:1-2, 137-152
Unfortunately, not all educators are exposed to these guidelines, especially if their collegiate programs do not provide exposure to the use of computers, aspects of web design or technology in education. In some cases, it may be advantageous for the educator to collaborate with an instructional technologist or web designer to ensure 508 guidelines are addressed in the desired learning environment for the CSCL.
Line 230:
1. An idea group size is around 3 to 4 people.
2. A duration between 1 and 4 weeks demonstrate better effects. The criticisms version indicate in the case of short term course the interactions networks not consolidate.<ref>Mena-Guacas, A.F., Velandia R, C.A. (2020). Interaction through mobile technology in short-term university courses. In: Heliyon, 6 (2), art. no. e03287. http://www.doi.org/10.1016/j.heliyon.2020.e03287</ref>
=== Professional Teaching Community ===
|