Content deleted Content added
mNo edit summary |
→Origin of lithium: Big bang production of lithium elaborated. This update was part of work done in a graduate cosmology course at the University of Illinois in Spring 2020. |
||
Line 4:
==Origin of lithium==
===Lithium Synthesis in the Big Bang===
Big-bang nucleosynthesis produces both lithium-7 and beryllium-7, and indeed the latter dominates the primordial mass-7 production. On the other hand, the big bang produces lithium-6 at levels more than 1000 times smaller.
{{nuclide|link=yes|beryllium|7}} later decays via [[electron capture]] into {{nuclide|link=yes|lithium|7}},
so that the observable primordial lithium abundance essentially sums {{nuclide|link=yes|lithium|7}}+{{nuclide|link=yes|beryllium|7}}.
These isotopes
are produced by the reactions
<!--
H-3 + He-4 -> Li-7 + y
He-3 + He-4 -> Be-7 + y
-->:{| border="0"
|- style="height:2em;"
|{{nuclide|link=yes|hydrogen|3}} ||+ ||{{nuclide|link=yes|helium|4}} ||→ ||{{nuclide|link=yes|lithium|7}} ||+ ||{{SubatomicParticle|link=yes|Gamma}}
|- style="height:2em;"
|{{nuclide|link=yes|helium|3}} ||+ ||{{nuclide|link=yes|helium|4}} ||→ ||{{nuclide|link=yes|beryllium|7}} ||+ ||{{SubatomicParticle|link=yes|Gamma}}
|- style="height:2em;"
|}
and destroyed by
<!--
H-3 + He-4 -> Li-7 + y
He-3 + He-4 -> Be-7 + y
-->:{| border="0"
|- style="height:2em;"
|{{nuclide|link=yes|beryllium|7}} ||+ ||{{SubatomicParticle|link=yes|neutron}} ||→ ||{{nuclide|link=yes|lithium|7}} ||+ ||{{SubatomicParticle|link=yes|proton}}
|- style="height:2em;"
|{{nuclide|link=yes|lithium|7}} ||+ ||{{SubatomicParticle|link=yes|proton}} ||→ ||{{nuclide|link=yes|helium|4}} ||+ ||{{nuclide|link=yes|helium|4}}
|- style="height:2em;"
|}
The amount of lithium generated in the Big Bang can be calculated.<ref>{{cite journal | bibcode= 1985ARA&A..23..319B | title= Big bang nucleosynthesis – Theories and observations | last1= Boesgaard | first1=A. M. | last2= Steigman | first2= G. | volume= 23 |date= 1985 | pages= 319–378 | journal= Annual Review of Astronomy and Astrophysics |id=A86-14507 04–90 |___location=Palo Alto, CA | doi= 10.1146/annurev.aa.23.090185.001535}}</ref> [[Hydrogen-1]] is the most abundant [[nuclide]], comprising roughly 92% of the atoms in the Universe, with [[helium-4]] second at 8%. Other isotopes including <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>6</sup>Li, <sup>7</sup>Li, and <sup>7</sup>Be are much rarer; the estimated abundance of primordial lithium is 10<sup>−10</sup> relative to hydrogen.<ref name=23bbn>{{cite book |last1=Tanabashi |first1=M. |display-authors=et al. |editor-last1=Fields |editor-first1=B.D. |editor-last2=Molaro |editor-first2=P. |editor-last3=Sarkar |editor-first3=S. |title=The Review |date=2018 |chapter=Big-bang nucleosynthesis |journal=Physical Review D |volume=98 |pages=377–382 |doi=10.1103/PhysRevD.98.030001 |url=https://pdg.lbl.gov/2019/reviews/rpp2018-rev-bbang-nucleosynthesis.pdf▼
}}</ref> The calculated abundance and ratio of <sup>1</sup>H and <sup>4</sup>He is in agreement with data from observations of young stars.<ref name="habitable">{{cite book |isbn=978-0691140063|title=How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind|last1=Langmuir|first1=Charles Herbert|last2=Broecker|first2=Wallace S.|year=2012}}</ref>▼
===The P-P II branch===
{{See also|Lithium burning}}
[[File:Proton-Proton II chain reaction.svg|thumb|Proton–proton II chain reaction]]
Line 27 ⟶ 59:
The P-P II branch is dominant at temperatures of 14 to {{val|23|u=MK}}.
▲The amount of lithium generated in the Big Bang can be calculated.<ref>{{cite journal | bibcode= 1985ARA&A..23..319B | title= Big bang nucleosynthesis – Theories and observations | last1= Boesgaard | first1=A. M. | last2= Steigman | first2= G. | volume= 23 |date= 1985 | pages= 319–378 | journal= Annual Review of Astronomy and Astrophysics |id=A86-14507 04–90 |___location=Palo Alto, CA | doi= 10.1146/annurev.aa.23.090185.001535}}</ref> [[Hydrogen-1]] is the most abundant [[nuclide]], comprising roughly 92% of the atoms in the Universe, with [[helium-4]] second at 8%. Other isotopes including <sup>2</sup>H, <sup>3</sup>H, <sup>3</sup>He, <sup>6</sup>Li, <sup>7</sup>Li, and <sup>7</sup>Be are much rarer; the estimated abundance of primordial lithium is 10<sup>−10</sup> relative to hydrogen.<ref name=23bbn>{{cite book |last1=Tanabashi |first1=M. |display-authors=et al. |editor-last1=Fields |editor-first1=B.D. |editor-last2=Molaro |editor-first2=P. |editor-last3=Sarkar |editor-first3=S. |title=The Review |date=2018 |chapter=Big-bang nucleosynthesis |journal=Physical Review D |volume=98 |pages=377–382 |doi=10.1103/PhysRevD.98.030001 |url=https://pdg.lbl.gov/2019/reviews/rpp2018-rev-bbang-nucleosynthesis.pdf
▲}}</ref> The calculated abundance and ratio of <sup>1</sup>H and <sup>4</sup>He is in agreement with data from observations of young stars.<ref name="habitable">{{cite book |isbn=978-0691140063|title=How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind|last1=Langmuir|first1=Charles Herbert|last2=Broecker|first2=Wallace S.|year=2012}}</ref>
[[File:Stable nuclides H to B.png|thumb|right|400px|Stable nuclides of the first few elements]]
|