Quantum Theory: Concepts and Methods: Difference between revisions

Content deleted Content added
Adding short description: "1993 quantum physics textbook" (Shortdesc helper)
m Disambiguating links to Semiclassical (link changed to Semiclassical physics) using DisamAssist.
Line 7:
<blockquote>The purpose of this book is to clarify the ''conceptual meaning'' of quantum theory, and to explain some of the mathematical methods that it utilizes. This text is not concerned with specialized topics such as atomic structure, or strong or weak interactions, but with the very foundations of the theory. This is not, however, a book on the [[philosophy of science]]. The approach is pragmatic and strictly instrumentalist. This attitude will undoubtedly antagonize some readers, but it has its own logic: quantum phenomena do not occur in a [[Hilbert space]], they occur in a laboratory.{{efn|Preface, p. xi}}</blockquote>
 
The book is divided into three parts. The first, "Gathering the Tools", introduces quantum mechanics as a theory of "preparations" and "tests", and it develops the mathematical formalism of Hilbert spaces, concluding with the [[spectral theory]] used to understand the quantum mechanics of continuous-valued observables. Part II, "Cryptodeterminism and Quantum Inseparability", focuses on [[Bell's theorem]] and other demonstrations that quantum mechanics is incompatible with [[local hidden-variable theory|local hidden-variable theories]]. (Among its substantial discussion of the failure of [[Hidden variable theory|hidden variable theories]], the book includes a [[FORTRAN]] program for testing whether a list of [[Euclidean vector|vector]]s forms a [[Kochen–Specker theorem|Kochen–Specker configuration]].{{efn|Section 7-5, "Appendix: Computer test for Kochen–Specker contradiction", p. 209}}) Part III, "Quantum Dynamics and Information", covers the role of [[spacetime]] symmetry in quantum physics, the relation of [[quantum information]] to [[thermodynamics]], [[Semiclassical physics|semiclassical approximation]] methods, [[quantum chaos]], and the treatment of [[measurement in quantum mechanics]].
 
To generate the figures in his chapter on quantum chaos, including plots in [[phase space]] of chaotic motion, Peres wrote [[PostScript]] code that executed simulations in the printer itself.{{efn|Section 11-7, "Appendix: PostScript code for a map", p. 370}}