Multivariate kernel density estimation: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
m Task 70: Update syntaxhighlight tags - remove use of deprecated <source> tags
Line 112:
The code fragment computes the kernel density estimate with the plug-in bandwidth matrix <math>\hat{\mathbf{H}}_{\operatorname{PI}} = \begin{bmatrix}0.052 & 0.510 \\ 0.510 & 8.882\end{bmatrix}.</math> Again, the coloured contours correspond to the smallest region which contains the respective probability mass: red = 25%, orange + red = 50%, yellow + orange + red = 75%. To compute the SCV selector, <code>Hpi</code> is replaced with <code>Hscv</code>. This is not displayed here since it is mostly similar to the plug-in estimate for this example.
 
<sourcesyntaxhighlight lang="rsplus" style="overflow:auto;">
library(ks)
data(faithful)
Line 119:
plot(fhat, display="filled.contour2")
points(faithful, cex=0.5, pch=16)
</syntaxhighlight>
</source>
 
==Density estimation with a diagonal bandwidth matrix==
Line 153:
in the current directory.
 
<sourcesyntaxhighlight lang="matlab" style="overflow:auto;">
clear all
% generate synthetic data
Line 163:
contour3(X,Y,density,50), hold on
plot(data(:,1),data(:,2),'r.','MarkerSize',5)
</syntaxhighlight>
</source>
 
==Alternative optimality criteria==