Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
Bluelink 2 books for verifiability (prndis)) #IABot (v2.0.1) (GreenC bot |
||
Line 1:
[[File:Function approximation with LCS rules.jpg|thumb|2D visualization of LCS rules learning to approximate a 3D function. Each blue ellipse represents an individual rule covering part of the solution space. (Adapted from images taken from XCSF<ref name=":9">{{Cite journal|last=Stalph|first=Patrick O.|last2=Butz|first2=Martin V.|date=2010-02-01|title=JavaXCSF: The XCSF Learning Classifier System in Java|journal=SIGEVOlution|volume=4|issue=3|pages=16–19|doi=10.1145/1731888.1731890|issn=1931-8499}}</ref> with permission from Martin Butz)]]
'''Learning classifier systems''', or '''LCS''', are a paradigm of [[rule-based machine learning]] methods that combine a discovery component (e.g. typically a [[genetic algorithm]]) with a learning component (performing either [[supervised learning]], [[reinforcement learning]], or [[unsupervised learning]]).<ref name=":1">{{Cite journal|last=Urbanowicz|first=Ryan J.|last2=Moore|first2=Jason H.|date=2009-09-22|title=Learning Classifier Systems: A Complete Introduction, Review, and Roadmap|journal=Journal of Artificial Evolution and Applications|language=en|volume=2009|pages=1–25|doi=10.1155/2009/736398|issn=1687-6229|doi-access=free}}</ref> Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a [[piecewise]] manner in order to make predictions (e.g. [[behavior modeling]],<ref>{{Cite journal|last=Dorigo|first=Marco|title=Alecsys and the AutonoMouse: Learning to control a real robot by distributed classifier systems|journal=Machine Learning|language=en|volume=19|issue=3|pages=209–240|doi=10.1007/BF00996270|issn=0885-6125|year=1995|doi-access=free}}</ref> [[Statistical classification|classification]],<ref>{{Cite journal|last=Bernadó-Mansilla|first=Ester|last2=Garrell-Guiu|first2=Josep M.|date=2003-09-01|title=Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks|journal=Evolutionary Computation|volume=11|issue=3|pages=209–238|doi=10.1162/106365603322365289|pmid=14558911|issn=1063-6560}}</ref><ref name=":0">{{Cite journal|last=Urbanowicz|first=Ryan J.|last2=Moore|first2=Jason H.|date=2015-04-03|title=ExSTraCS 2.0: description and evaluation of a scalable learning classifier system|journal=Evolutionary Intelligence|language=en|volume=8|issue=2–3|pages=89–116|doi=10.1007/s12065-015-0128-8|issn=1864-5909|pmc=4583133|pmid=26417393}}</ref> [[data mining]],<ref name=":0" /><ref>{{Cite book|title=Advances in Learning Classifier Systems|url=https://archive.org/details/advanceslearning00lanz|url-access=limited|last=Bernadó|first=Ester|last2=Llorà|first2=Xavier|last3=Garrell|first3=Josep M.|date=2001-07-07|publisher=Springer Berlin Heidelberg|isbn=9783540437932|editor-last=Lanzi|editor-first=Pier Luca|series=Lecture Notes in Computer Science|pages=
The founding concepts behind learning classifier systems came from attempts to model [[complex adaptive system]]s, using rule-based agents to form an artificial cognitive system (i.e. [[artificial intelligence]]).
|