Content deleted Content added
inserted notelist template |
template err |
||
Line 5:
:<math>\pi_0(x) = \frac{1}{2} \lim_{h\to 0} \left[\,\pi(x+h) + \pi(x-h)\,\right]\,,</math>
which takes the arithmetic mean of the limit from the left and the limit from the right at discontinuities.{{efn|The original prime counting function can easily be recovered via <math>~\pi(x) = \pi_0(x+1)~</math> for all <math>~x \ge 3~.</math>}} His formula was given in terms of the related function
:<math>f(x) = \pi_0(x) + \frac{1}{2}\,\pi_0(x^{1/2}) + \frac{1}{3}\,\pi_0(x^{1/3}) + \cdots</math>
in which a prime power {{math|''p''<sup>''n''</sup>}} counts as {{frac|1|{{mvar|n}}}} of a prime. The normalized prime-counting function can be recovered from this function by
:<math>\pi_0(x) = \sum_n\frac{1}{n}\,\mu(n)\,f(x^{1/n}) = f(x) - \frac{1}{2}\,f(x^{1/2}) - \frac{1}{3}\,f(x^{1/3}) - \frac{1}{5}\,f(x^{1/5}) + \frac{1}{6}\,f(x^{1/6}) - \cdots,</math>
where {{math|''μ''(''n'')}} is the [[Möbius function]]. Riemann's formula is then
:<math>f(x) = \operatorname{li}(x) - \sum_\rho \operatorname{li}(x^\rho) - \log(2) + \int_x^\infty \frac{
involving a sum over the non-trivial zeros {{mvar|ρ}} of the Riemann zeta function. The sum is not [[Absolute convergence|absolutely convergent]], but may be evaluated by taking the zeros in order of the absolute value of their imaginary part. The function {{math|li}} occurring in the first term is the (unoffset) [[logarithmic integral function]] given by the [[Cauchy principal value]] of the divergent integral
:<math>\operatorname{li}(x) = \int_0^x \frac{
The terms {{math
The first rigorous proof of the aforementioned formula was given by von Mangoldt in 1895: it started with a proof of the following formula for the [[Chebyshev's function]] {{mvar|ψ}} <ref>Weisstein, Eric W. [http://mathworld.wolfram.com/ExplicitFormula.html Explicit Formula] on MathWorld.</ref>
:<math>\psi_0(x) = \dfrac{1}{2\pi i}\int_{\sigma-i \infty}^{\sigma+i \infty}\left(-\dfrac{\zeta'(s)}{\zeta(s)}\right)\dfrac{x^s}{s}
where the LHS is an inverse Mellin transform with
:<math>\quad\sigma > 1\,, \quad \psi(x) = \sum_{p^k \le x} \log p\,,
|