Circular convolution: Difference between revisions

Content deleted Content added
remove possibly incorrect part of a footnote
clarify a footnote
Line 5:
Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:
 
:<math>x_T(t) \ \triangleq \ \sum_{k=-\infty}^\infty x(t - kT) = \sum_{k=-\infty}^\infty x(t + kT).</math>{{efn-la<ref name=McGillem/>
|[[#refMcGillem|McGillem and Cooper]], p 183 (4-51)
}}
 
If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''
Line 29 ⟶ 27:
}}
 
where ''t''<sub>o</sub> is an arbitrary parameter and ''h''<sub>''T''</sub> is a [[periodic summation]] of ''h''.&nbsp; The second integral is called the '''periodic convolution'''<ref name=Jeruchim/><ref name=Udayashankara/> of functions ''x''<sub>''T''</sub> and ''h''<sub>''T''</sub>.&nbsp; When ''x''<sub>''T''</sub> is expressed as the [[periodic summation]] of another function, ''x'', the same operation may also be referred to as a '''circular convolution'''<ref name=Udayashankara/><ref name=Priemer/> of functions ''h'' and ''x''.{{efn-ua
|This terminology is not consistent across all authors. Some authors constrain both <math>h</math> and <math>x</math> to the interval <math>[0,T]</math> and call &nbsp;<math>\int_{0}^{T} h(\tau)\cdot x(\mathrm{mod}_T(t - \tau))\ d\tau</math>&nbsp; a ''circular convolution''.}}
 
The second integral is called the '''periodic convolution'''<ref name=Oppenheim/><ref name=Jeruchim/><ref name=Udayashankara/> of functions ''x''<sub>''T''</sub> and ''h''<sub>''T''</sub>.&nbsp; When ''x''<sub>''T''</sub> is expressed as the [[periodic summation]] of another function, ''x'', the same operation may also be referred to as a '''circular convolution'''<ref name=Oppenheim/><ref name=Udayashankara/><ref name=Priemer/> of functions ''h'' and ''x''.{{efn-ua
|This terminology is not consistent across all authors. Some authors consider them synonymous.{{efn-la
|[[#refMcGillem|McGillem and Cooper]], p 172 (4-5 & 4-6)}}
}}
 
== Discrete sequences ==
Line 88 ⟶ 82:
}}</ref>
 
<ref name=Oppenheim>
{{cite book
|ref=refOppenheim
|last=Oppenheim
|first=Alan V.
|authorlink=Alan V. Oppenheim
|last2=Schafer
|first2=Ronald W.
|author2-link=Ronald W. Schafer
|last3=Buck
|first3=John R.
|title=Discrete-time signal processing
|pages=[https://archive.org/details/discretetimesign00alan/page/548 548],571
|year=1999
|publisher=Prentice Hall
|___location=Upper Saddle River, N.J.
|isbn=0-13-754920-2
|edition=2nd
|url-access=registration
|url=https://archive.org/details/discretetimesign00alan
}}&nbsp; Also available at https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
</ref>
 
<ref name=Priemer>
Line 157 ⟶ 129:
| isbn =978-8-12-034049-7
}}</ref>
<ref name=OppenheimMcGillem>
}}
{{cite book
{{refbegin}}
#<li value="6">{{cite book
| ref=refMcGillem
| last1 =McGillem
Line 165 ⟶ 136:
| last2 =Cooper
| first2 =George R.
| page =183 (4-51)
| title =Continuous and Discrete Signal and System Analysis
| publisher =Holt, Rinehart and Winston
Line 170 ⟶ 142:
| date =1984
| isbn =0-03-061703-0
}}</ref>
}}
{{refbegin}}
#<li value="6">{{cite book
|ref=refOppenheim
|last=Oppenheim
|first=Alan V.
|authorlink=Alan V. Oppenheim
|last2=Schafer
|first2=Ronald W.
|author2-link=Ronald W. Schafer
|last3=Buck
|first3=John R.
|title=Discrete-time signal processing
|pages=[https://archive.org/details/discretetimesign00alan/page/548 548],571
|year=1999
|publisher=Prentice Hall
|___location=Upper Saddle River, N.J.
|isbn=0-13-754920-2
|edition=2nd
|url-access=registration
|url=https://archive.org/details/discretetimesign00alan
}}&nbsp; Also available at https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
</li>