Circular convolution: Difference between revisions

Content deleted Content added
m add whitespace
No edit summary
Line 3:
}}
 
The ''periodic convolution'' of two T-periodic functions, <math>h_T(t)</math> and <math>x_T(t)</math> is defined as:
Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:
 
:<math>x_T(t) \ \triangleq \ \sum_int_{k=-\inftyt_o}^{t_o+T} h_T(\inftytau)\cdot xx_T(t - kT\tau) = \sum_{k=-,d\infty}^\inftytau,</math> x(t&nbsp; +<ref kT).<name=Jeruchim/math><ref name=McGillemUdayashankara/>
 
where ''t''<sub>o</sub> is an arbitrary parameter.&nbsp; <math>h_T(t)</math> and <math>x_T(t)</math> can also be expressed in terms of some aperiodic components <math>h</math> and <math>x</math>, i.e.:
If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''
 
:<math>h_T(t) \ \triangleq \ \sum_{k=-\infty}^\infty h(t - kT) = \sum_{k=-\infty}^\infty h(t + kT),</math>
:<math>
 
\begin{align}
which is called a [[periodic summation]]. Then the periodic convolution can be expressed in the notation of normal ''linear'' convolution:
(x_T * h)(t)\quad &\triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
 
&\equiv \int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,
:<math>(x * h_T)(t) = (h *x_T)(t)\quad \triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau.</math>{{efn-ua
\end{align}
</math>{{efn-ua
|Proof:
 
:<math>\begin{align}
&\int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
Line 23 ⟶ 21:
&\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tau + kT)\cdot x_T(t - \tau -kT)\ d\tau\right] \\
={} &\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tau + kT)\cdot \underbrace{x_T(t - \tau-kT)}_{X_T(t - \tau), \text{ by periodicity}}\right]\ d\tau\\
={} &\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tau + kT)\right]}_{\triangleq \ h_T(\tau)}\cdot x_T(t - \tau)\ d\tau \quad \quad \scriptstyle{(QED)}
\end{align}</math>
}}
 
The term ''circular convolution'' arises from the important special case of constraining the non-zero portions of both <math>h</math> and <math>x</math> to the interval <math>[0,T].</math> Then the periodic summation becomes a ''periodic extension''<ref name=McGillem/>{{efn-la
|[[#refMcGillem|McGillem and Cooper]], p 183 (4-51)
}}:
 
:<math>x_T(t) = x(t_{\mathrm{mod}\ T}), \quad -\infty < t < \infty.</math>
 
:<math>(h *x_T)(t) = \int_{0}^{T} h(\tau)\cdot x((t - \tau)_{\mathrm{mod}\ T})\ d\tau.</math>
 
 
 
 
 
 
Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:
 
:<math>x_T(t) \ \triangleq \ \sum_{k=-\infty}^\infty x(t - kT) = \sum_{k=-\infty}^\infty x(t + kT).</math><ref name=McGillem/>
 
If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''
 
:<math>
\begin{align}
(x_T * h)(t)\quad &\triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
&\equiv \int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,
\end{align}
</math>{{efn-ua
 
where ''t''<sub>o</sub> is an arbitrary parameter and ''h''<sub>''T''</sub> is a [[periodic summation]] of ''h''.&nbsp; The second integral is called the '''periodic convolution'''<ref name=Jeruchim/><ref name=Udayashankara/> of functions ''x''<sub>''T''</sub> and ''h''<sub>''T''</sub>.&nbsp; When ''x''<sub>''T''</sub> is expressed as the [[periodic summation]] of another function, ''x'', the same operation may also be referred to as a '''circular convolution'''<ref name=Udayashankara/><ref name=Priemer/> of functions ''h'' and ''x''.{{efn-ua
Line 128 ⟶ 152:
| ___location =India
| isbn =978-8-12-034049-7
}}</ref>
<ref name=McGillem>
{{cite book
| ref=refMcGillem
| last1 =McGillem
| first1 =Clare D.
| last2 =Cooper
| first2 =George R.
| page =183 (4-51)
| title =Continuous and Discrete Signal and System Analysis
| publisher =Holt, Rinehart and Winston
| edition =2
| date =1984
| isbn =0-03-061703-0
}}</ref>
}}
{{refbegin}}
#<li value="65">{{cite book
|ref=refOppenheim
|last=Oppenheim
Line 165 ⟶ 175:
|url=https://archive.org/details/discretetimesign00alan
}}&nbsp; Also available at https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
<ref name=McGillem>
{{cite book
| ref=refMcGillem
| last1 =McGillem
| first1 =Clare D.
| last2 =Cooper
| first2 =George R.
| page =183 (4-51)
| title =Continuous and Discrete Signal and System Analysis
| publisher =Holt, Rinehart and Winston
| edition =2
| date =1984
| isbn =0-03-061703-0
}}</ref>
</li>