Content deleted Content added
m add whitespace |
No edit summary |
||
Line 3:
}}
The ''periodic convolution'' of two T-periodic functions, <math>h_T(t)</math> and <math>x_T(t)</math> is defined as:
Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:▼
:<math>
where ''t''<sub>o</sub> is an arbitrary parameter. <math>h_T(t)</math> and <math>x_T(t)</math> can also be expressed in terms of some aperiodic components <math>h</math> and <math>x</math>, i.e.:
If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''▼
:<math>h_T(t) \ \triangleq \ \sum_{k=-\infty}^\infty h(t - kT) = \sum_{k=-\infty}^\infty h(t + kT),</math>
:<math>▼
\begin{align}▼
which is called a [[periodic summation]]. Then the periodic convolution can be expressed in the notation of normal ''linear'' convolution:
(x_T * h)(t)\quad &\triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\▼
&\equiv \int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,▼
:<math>(x * h_T)(t) = (h *x_T)(t)\quad \triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau.</math>{{efn-ua
\end{align}▼
</math>{{efn-ua▼
|Proof:
:<math>\begin{align}
&\int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
Line 23 ⟶ 21:
&\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tau + kT)\cdot x_T(t - \tau -kT)\ d\tau\right] \\
={} &\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tau + kT)\cdot \underbrace{x_T(t - \tau-kT)}_{X_T(t - \tau), \text{ by periodicity}}\right]\ d\tau\\
={} &\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tau + kT)\right]}_{\triangleq \ h_T(\tau)}\cdot x_T(t - \tau)\ d\tau
\end{align}</math>
}}
The term ''circular convolution'' arises from the important special case of constraining the non-zero portions of both <math>h</math> and <math>x</math> to the interval <math>[0,T].</math> Then the periodic summation becomes a ''periodic extension''<ref name=McGillem/>{{efn-la
|[[#refMcGillem|McGillem and Cooper]], p 183 (4-51)
}}:
:<math>x_T(t) = x(t_{\mathrm{mod}\ T}), \quad -\infty < t < \infty.</math>
:<math>(h *x_T)(t) = \int_{0}^{T} h(\tau)\cdot x((t - \tau)_{\mathrm{mod}\ T})\ d\tau.</math>
▲Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:
:<math>x_T(t) \ \triangleq \ \sum_{k=-\infty}^\infty x(t - kT) = \sum_{k=-\infty}^\infty x(t + kT).</math><ref name=McGillem/>
▲If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''
▲:<math>
▲\begin{align}
▲(x_T * h)(t)\quad &\triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
▲ &\equiv \int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,
▲\end{align}
where ''t''<sub>o</sub> is an arbitrary parameter and ''h''<sub>''T''</sub> is a [[periodic summation]] of ''h''. The second integral is called the '''periodic convolution'''<ref name=Jeruchim/><ref name=Udayashankara/> of functions ''x''<sub>''T''</sub> and ''h''<sub>''T''</sub>. When ''x''<sub>''T''</sub> is expressed as the [[periodic summation]] of another function, ''x'', the same operation may also be referred to as a '''circular convolution'''<ref name=Udayashankara/><ref name=Priemer/> of functions ''h'' and ''x''.{{efn-ua
Line 128 ⟶ 152:
| ___location =India
| isbn =978-8-12-034049-7
}}</ref>▼
<ref name=McGillem>▼
{{cite book▼
| ref=refMcGillem▼
| last1 =McGillem▼
| first1 =Clare D.▼
| last2 =Cooper▼
| first2 =George R.▼
| page =183 (4-51)▼
| title =Continuous and Discrete Signal and System Analysis▼
| publisher =Holt, Rinehart and Winston▼
| edition =2▼
| date =1984▼
| isbn =0-03-061703-0▼
}}</ref>
}}
{{refbegin}}
#<li value="
|ref=refOppenheim
|last=Oppenheim
Line 165 ⟶ 175:
|url=https://archive.org/details/discretetimesign00alan
}} Also available at https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
▲<ref name=McGillem>
▲{{cite book
▲ | ref=refMcGillem
▲ | last1 =McGillem
▲ | first1 =Clare D.
▲ | last2 =Cooper
▲ | first2 =George R.
▲ | page =183 (4-51)
▲ | title =Continuous and Discrete Signal and System Analysis
▲ | publisher =Holt, Rinehart and Winston
▲ | edition =2
▲ | date =1984
▲ | isbn =0-03-061703-0
▲}}</ref>
</li>
|