Content deleted Content added
No edit summary |
|||
Line 3:
}}
Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:▼
:<math>x_T(t) \
If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''▼
:<math>▼
\begin{align}▼
(x_T * h)(t)\quad &\triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\▼
&\equiv \int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,▼
\end{align}▼
</math>{{efn-ua▼
|Proof:
:<math>\begin{align}
&\int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
Line 21 ⟶ 23:
&\sum_{k=-\infty}^\infty \left[\int_{t_o}^{t_o+T} h(\tau + kT)\cdot x_T(t - \tau -kT)\ d\tau\right] \\
={} &\int_{t_o}^{t_o+T} \left[\sum_{k=-\infty}^\infty h(\tau + kT)\cdot \underbrace{x_T(t - \tau-kT)}_{X_T(t - \tau), \text{ by periodicity}}\right]\ d\tau\\
={} &\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(\tau + kT)\right]}_{\triangleq \ h_T(\tau)}\cdot x_T(t - \tau)\ d\tau \quad \quad \scriptstyle{(QED)}
\end{align}</math>
}}
▲Let ''x'' be a function with a well-defined periodic summation, ''x''<sub>''T''</sub>, where:
▲If ''h'' is any other function for which the convolution ''x''<sub>''T''</sub> ∗ ''h'' exists, then the convolution ''x''<sub>''T''</sub> ∗ ''h'' is periodic and identical to''':'''
▲:<math>
▲\begin{align}
▲(x_T * h)(t)\quad &\triangleq \ \int_{-\infty}^\infty h(\tau)\cdot x_T(t - \tau)\,d\tau \\
▲ &\equiv \int_{t_o}^{t_o+T} h_T(\tau)\cdot x_T(t - \tau)\,d\tau,
▲\end{align}
▲</math>
where ''t''<sub>o</sub> is an arbitrary parameter and ''h''<sub>''T''</sub> is a [[periodic summation]] of ''h''. The second integral is called the '''periodic convolution'''<ref name=Jeruchim/><ref name=Udayashankara/> of functions ''x''<sub>''T''</sub> and ''h''<sub>''T''</sub>. When ''x''<sub>''T''</sub> is expressed as the [[periodic summation]] of another function, ''x'', the same operation may also be referred to as a '''circular convolution'''<ref name=Udayashankara/><ref name=Priemer/> of functions ''h'' and ''x''.{{efn-ua
Line 152 ⟶ 128:
| ___location =India
| isbn =978-8-12-034049-7
}}</ref>▼
<ref name=McGillem>▼
{{cite book▼
| ref=refMcGillem▼
| last1 =McGillem▼
| first1 =Clare D.▼
| last2 =Cooper▼
| first2 =George R.▼
| page =183 (4-51)▼
| title =Continuous and Discrete Signal and System Analysis▼
| publisher =Holt, Rinehart and Winston▼
| edition =2▼
| date =1984▼
| isbn =0-03-061703-0▼
}}</ref>
}}
{{refbegin}}
#<li value="
|ref=refOppenheim
|last=Oppenheim
Line 175 ⟶ 165:
|url=https://archive.org/details/discretetimesign00alan
}} Also available at https://d1.amobbs.com/bbs_upload782111/files_24/ourdev_523225.pdf
▲<ref name=McGillem>
▲{{cite book
▲ | ref=refMcGillem
▲ | last1 =McGillem
▲ | first1 =Clare D.
▲ | last2 =Cooper
▲ | first2 =George R.
▲ | page =183 (4-51)
▲ | title =Continuous and Discrete Signal and System Analysis
▲ | publisher =Holt, Rinehart and Winston
▲ | edition =2
▲ | date =1984
▲ | isbn =0-03-061703-0
▲}}</ref>
</li>
|