Content deleted Content added
decapitalise |
m some more decapitalisation |
||
Line 4:
== Multidimensional separable discrete wavelet transform (DWT) ==
The [[
In 2-D for example, the tensor product space for 2-D is decomposed into four tensor product vector spaces<ref name=Tensor_products>{{cite journal|last1=Kugarajah|first1=Tharmarajah|last2=Zhang|first2=Qinghua|title=Multidimensional wavelet frames|journal=IEEE Transactions on Neural Networks|date=November 1995|volume=6|issue=6|pages=1552–1556|doi=10.1109/72.471353|pmid=18263450|hdl=1903/5619|hdl-access=free}}</ref> as
{{math| ( φ(x) ⨁ ψ(x) ) ⊗ ( φ(y) ⨁ ψ(y) ) {{=}} { φ(x)φ(y), φ(x)ψ(y), ψ(x)φ(y), ψ(x)ψ(y) }}}
This leads to the concept of multidimensional separable DWT similar in principle to the multidimensional DFT.
Line 75:
{{math| H<sub>x</sub> H<sub>y</sub> {ψ(x)<sub>h</sub>ψ(y)<sub>h</sub>} {{=}} ψ(x)<sub>g</sub>ψ(y)<sub>g</sub> }}
For the 2-D case, this is named dual tree '''[[quaternion]]
The total redundancy in M-D is {{math|2<sup>m</sup>}} tight frame.
|