Compound Poisson process: Difference between revisions

Content deleted Content added
minor clarification in introduction
No edit summary
Line 11:
The [[expected value]] of a compound Poisson process can be calculated using a result known as [[Wald's equation]] as:
 
:<math>\,operatorname E(Y(t)) = \operatorname E(D_{1}D_1 + ...\cdots + D_{N(t)}) = \operatorname E(N(t))\operatorname E(D_{1}D_1) = \operatorname E(N(t)) \operatorname E(D) = \lambda t \operatorname E(D).</math>
 
Making similar use of the [[law of total variance]], the [[variance]] can be calculated as:
:<math>
\begin{align}
\operatorname{var}(Y(t)) &= \operatorname E(\operatorname{var}(Y(t)|\mid N(t))) + \operatorname{var}(\operatorname E(Y(t)|\mid N(t))) \\
&= \operatorname E(N(t)\operatorname{var}(D)) + \operatorname{var}(N(t) \operatorname E(D)) \\
&= \operatorname{var}(D) \operatorname E(N(t)) + \operatorname E(D)^2 \operatorname{var}(N(t)) \\
&= \operatorname{var}(D)\lambda t + \operatorname E(D)^2\lambda t \\
&= \lambda t(\operatorname{var}(D) + \operatorname E(D)^2) \\
&= \lambda t \operatorname E(D^2).
\end{align}
</math>
Line 27:
Lastly, using the [[law of total probability]], the [[moment generating function]] can be given as follows:
:<math>\,\Pr(Y(t)=i) = \sum_{n}sum_n \Pr(Y(t)=i|\mid N(t)=n)\Pr(N(t)=n) </math>
 
:<math>
\begin{align}
\operatorname E(e^{sY}) & = \sum_i e^{si} \Pr(Y(t)=i) \\
& = \sum_i e^{si} \sum_{n} \Pr(Y(t)=i|\mid N(t)=n)\Pr(N(t)=n) \\
& = \sum_n \Pr(N(t)=n) \sum_i e^{si} \Pr(Y(t)=i|\mid N(t)=n) \\
& = \sum_n \Pr(N(t)=n) \sum_i e^{si}\Pr(D_1 + D_2 + \cdots + D_n=i) \\
& = \sum_n \Pr(N(t)=n) M_D(s)^n \\