Content deleted Content added
→J-integral and CTOD: added citation |
m Fixing extra text in CS1 - "edition" doesn't need an "ed" suffix - plus standard AWB fixes |
||
Line 1:
'''Crack tip opening displacement''' ('''CTOD''') or <math>\delta_\text{t}</math> is the distance between the opposite faces of a [[fracture|crack]] tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces.<ref name="suresh04">{{cite book |last1=Suresh |first1=S. |date=2004 |title=Fatigue of Materials |publisher=Cambridge University Press |isbn=978-0-521-57046-6}}</ref> The parameter is used in [[fracture mechanics]] to characterize the loading on a crack and can be related to other crack tip loading parameters such as the [[stress intensity factor]] <math>K</math> and the elastic-plastic [[J-integral]].
For [[plane stress]] conditions, the CTOD can be written as:<ref>{{Cite book|last=Janssen|first=Michael|url=https://www.worldcat.org/oclc/57491375|title=Fracture mechanics|date=2004|publisher=Spon Press|others=Zuidema, J. (Jan), Wanhill, R. J. H.|year=|isbn=0-203-59686-2|edition=2nd
<math>\delta_\text{t} = \left(\frac{8\sigma_\text{ys}a}{\pi E}\right)\ln\left[\sec\left(\frac{\pi \sigma^\infty}{2\sigma_\text{ys}}\right)\right]</math>
Line 7:
where <math>\sigma_\text{ys}</math> is the [[Yield (engineering)|yield stress]], <math>a</math> is the crack length, <math>E</math> is the [[Young's modulus]] , and <math>\sigma^\infty</math>is the remote applied stress.
Under[[fatigue (material)|
== History ==
Examination of fractured test specimens led to the observation that the crack faces had moved apart prior to fracture, due to the blunting of an initially sharp crack by plastic deformation. The degree of crack blunting increased in proportion to the toughness of the material.<ref>{{cite journal |first1=J. C. |last1=Newman Jr.|first2=M. A. |last2=James |first3=U. |last3=Zerbst |title=A review of the CTOA/CTOD fracture criterion |journal=Engineering Fracture Mechanics |volume=30 |issue=3-4 |pages=
== Use as a design parameter ==
Line 19:
== Relation with other crack tip parameters ==
=== K and CTOD ===
CTOD can be expressed in terms of stress intensity factor <math>K</math> as<ref>{{cite book |first=T. L. |last=Anderson |title=Fracture Mechanics: Fundamentals and Applications |edition=Third |url={{google books |plainurl=y |id=MxrtsC-ZooQC}}|date=24 June 2005|publisher=CRC Press|isbn=978-0-8493-1656-2 |ref=harv |pp=
:<math>\delta_\text{t} = \frac{4}{\pi}\frac{K^2}{m\sigma_\text{y} E} </math>
where <math>\sigma_\text{y}</math> is the yield strength, <math>E</math> is Young's modulus and <math>m=1</math> for [[plane stress]] and <math>m=2</math> for [[plane strain]].
|