Wavelet for multidimensional signals analysis: Difference between revisions

Content deleted Content added
m some more decapitalisation
m Remove extra space around parenthesis
Line 7:
In 2-D for example, the tensor product space for 2-D is decomposed into four tensor product vector spaces<ref name=Tensor_products>{{cite journal|last1=Kugarajah|first1=Tharmarajah|last2=Zhang|first2=Qinghua|title=Multidimensional wavelet frames|journal=IEEE Transactions on Neural Networks|date=November 1995|volume=6|issue=6|pages=1552–1556|doi=10.1109/72.471353|pmid=18263450|hdl=1903/5619|hdl-access=free}}</ref> as
 
{{math| ( &phi;(x) ⨁ &psi;(x) ) ⊗ ( &phi;(y) ⨁ &psi;(y) ) {{=}} { &phi;(x)&phi;(y), &phi;(x)&psi;(y), &psi;(x)&phi;(y), &psi;(x)&psi;(y) }}}
 
This leads to the concept of multidimensional separable DWT similar in principle to the multidimensional DFT.