Schema (matematica): differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Menu82 (discussione | contributi)
m Correzione collegamento (nuova pagina funtore aggiunto)
Riga 30:
Gli schemi formano una categoria se si prende come morfismi i morfismi di [[spazio localmente anellato|spazi localmente anellati]].
 
I morfismi da uno schema in uno schema affine sono completamente spiegabili grazie alla seguente [[funtore aggiuntiaggiunto|coppia di funtori aggiunti]]: Per ogni schema ''X'' ed ogni anello commutativo ''A'' abbiamo la seguente equivalenza naturale:
:<math>\operatorname{Hom}_{\rm Schemi}(X, \operatorname{Spec}(A)) \simeq \operatorname{Hom}_{\rm Anelli}(A, O_X(X))</math>