Ipergrafo: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Una spaziatura |
m Bot: sintassi dei link e modifiche minori |
||
Riga 12:
]]
In [[matematica]], un '''ipergrafo''' è un [[
Mentre in un grafo gli archi sono formati da una coppia di nodi, gli iperarchi sono insieme di nodi di grandezza arbitraria, e pertanto possono contenere qualsivoglia numero intero positivo di nodi. Tuttavia, è spesso desiderabile il caso di ipergrafi dove tutti gli iperarchi hanno la stessa cardinalità; un '''ipergrafo k-uniforme''' è un ipergrafo in cui tutti gli iperarchi hanno grandezza ''k''. (In altre parole, un ipergrafo di questo genere è una collezione di insiemi, in cui ogni insieme è un iperarco connesso a ''k'' nodi.). Ne segue che un ipergrafo 2-uniforme è un grafo, un ipergrafo 3-uniforme è una collezione di triple non ordinata, e così via.
Riga 87:
==Aciclicità==
In contrasto con ordinari grafi sconnessi per i quali esiste una singola nozione naturale di
Una prima definizione di aciclicità per ipergrafi viene data da [[Claude Berge]]:<ref>[[Claude Berge]], ''Graphs and Hypergraphs''</ref> un ipergrafo è Berge-aciclico se il suo [[grafo di incidenza]] (il [[grafo bipartito]] sopra definito) è aciclico. Tale definizione è molto restrittiva: per esempio, se un ipergrafo ha una coppia <math>v \neq v'</math> di vertici e alcune coppie <math>f \neq f'</math> di iperarchi tali che <math>v, v' \in f</math> and <math>v, v' \in f'</math>, allora esso è Berge-ciclico. La Berge-cyclicità può ovviamente essere testata in [[tempo lineare]] esplorando un grafo di incidenza.
Possiamo utilizzare una definizione più debole di aciclicità di ipergrafo,
Possiamo testare in [[tempo lineare]] se un ipergrafo sia α-aciclico.<ref>[[Robert Tarjan|R. E. Tarjan]], [[Mihalis Yannakakis|M. Yannakakis]]. ''Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs''. SIAM J. on Computing, 13(3):566-579, 1984.</ref>
Bisogna però far notareche l'α-aciclicità ha la seguente proprietà contro intuitiva: aggiungere iperarchi a un ipergrafo α-ciclico può renderlo α-aciclico (per esempio, aggiungere un iperarco contenente tutti i vertici dell'ipergrafo lo renderà sempre α-aciclico). Tale limite viene in parte motivato, [[Ronald Fagin]]<ref name="fagin1983degrees">[[Ronald Fagin]], ''Degrees of Acyclicity for Hypergraphs and Relational Database Schemes''</ref> definì le nozioni più forti di β-aciclicità e γ-aciclicità. Possiamo definire la β-aciclicità come il requisito affinché tutti i sottoipergrafi di un ipergrafo siano α-aciclici, che è equivalente
Queste quattro nozioni di aciclicità possono essere comparate: Berge-aciclicità implica γ-aciclicità che implica β-aciclicità che implica α-aciclicità. Tuttavia nessuna delle precedenti proprietà può essere applicata biettivamente, e pertanto considerate aciclitià differenti.<ref name="fagin1983degrees" />
== Isomorfismi e uguaglianza ==
Un ipergrafo [[omomorfo]] è una associazione dall'insieme dei vertici di un ipergrafo a un altro, tale che ogni arco è associato a un altro arco.
| |||