Content deleted Content added
short introduction as opposed to a longer one |
m →top: repair cs1 templates with unsupported parameters; (1× encyclopedia) |
||
Line 8:
{{external media|width=230px|float=left|video1=[https://www.youtube.com/watch?v=YovAFlzFtzg Visualization] of unsuccessful nuclear fusion, based on calculations by the [[Australian National University]]<ref>{{Cite journal|last=Wakhle|first=A.|last2=Simenel|first2=C.|last3=Hinde|first3=D. J.|displayauthors=3|last4=Dasgupta|first4=M.|last5=Evers|first5=M.|last6=Luong|first6=D. H.|last7=du Rietz|first7=R.|date=2015|editor-last=Simenel|editor-first=C.|editor2-last=Gomes|editor2-first=P. R. S.|editor3-last=Hinde|editor3-first=D. J.|displayeditors=3|editor4-last=Madhavan|editor4-first=N.|editor5-last=Navin|editor5-first=A.|editor6-last=Rehm|editor6-first=K. E.|title=Comparing Experimental and Theoretical Quasifission Mass Angle Distributions|journal=[[European Physical Journal WOC|European Physical Journal Web of Conferences]]|volume=86|pages=00061|doi=10.1051/epjconf/20158600061|bibcode=2015EPJWC..8600061W|issn=2100-014X|doi-access=free}}</ref>}}
A superheavy{{efn|In [[nuclear physics]], an element is called [[heavy element|heavy]] if its atomic number is high; [[lead]] (element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than [[lawrencium|103]] (although there are other definitions, such as atomic number greater than 100<ref>{{Cite web|url=https://www.chemistryworld.com/news/explainer-superheavy-elements/1010345.article|title=Explainer: superheavy elements|last=Krämer|first=K.|date=2016|website=[[Chemistry World]]|language=en|access-date=2020-03-15}}</ref> or 112;<ref>{{Cite web|archive-url=https://web.archive.org/web/20150911081623/https://pls.llnl.gov/research-and-development/nuclear-science/project-highlights/livermorium/elements-113-and-115|url=https://pls.llnl.gov/research-and-development/nuclear-science/project-highlights/livermorium/elements-113-and-115|title=Discovery of Elements 113 and 115|publisher=[[Lawrence Livermore National Laboratory]]|archive-date=2015-09-11|access-date=2020-03-15}}</ref> sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical [[superactinide]] series).<ref>{{cite
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam.<ref name="SHEhowvideo">{{Cite web|url=https://www.scientificamerican.com/article/how-to-make-superheavy-elements-and-finish-the-periodic-table-video/|title=How to Make Superheavy Elements and Finish the Periodic Table [Video]|author=Chemistry World|date=2016|website=[[Scientific American]]|language=en|url-status=live|access-date=2020-01-27}}</ref> In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products){{Efn|This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle.{{sfn|Hoffman|2000|p=334}} Such separation can also be aided by a [[Time-of-flight mass spectrometry|time-of-flight measurement]] and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.{{sfn|Hoffman|2000|p=335}}}} and transferred to a [[Semiconductor detector|surface-barrier detector]], which stops the nucleus. The exact ___location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival.<ref name="SHEhowvideo" /> The transfer takes about 10<sup>−6</sup> seconds; in order to be detected, the nucleus must survive this long.{{sfn|Zagrebaev|2013|page=3}} The nucleus is recorded again once its decay is registered, and the ___location, the [[Decay energy|energy]], and the time of the decay are measured.<ref name="SHEhowvideo" />
|