Content deleted Content added
m →Redundancy: Fixed links to 2 cited papers |
Brzostowski (talk | contribs) m Clarification about accuracy vs. standard deviation |
||
Line 54:
The term <math>\left(\frac{y_i^*-y_i}{\sigma_i}\right)^2\,\!</math> is called the ''penalty'' of measurement ''i''. The objective function is the sum of the penalties, which will be denoted in the following by <math>f(y^*)=\sum_{i=1}^n\left(\frac{y_i^*-y_i}{\sigma_i}\right)^2</math>.
In other words, one wants to minimize the overall correction (measured in the least squares term) that is needed in order to satisfy the [[constraint (mathematics)|system constraints]]. Additionally, each least squares term is weighted by the [[standard deviation]] of the corresponding measurement. The standard deviation is related to the accuracy of the measurement. For example, at a 95% confidence level, the standard deviation is about twice the accuracy.
===Redundancy===
Line 65:
Redundancy can be due to [[redundancy (engineering)|sensor redundancy]], where sensors are duplicated in order to have more than one measurement of the same quantity. Redundancy also arises when a single variable can be estimated in several independent ways from separate sets of measurements at a given time or time averaging period, using the algebraic constraints.
Redundancy is linked to
[https://gregstanleyandassociates.com/CES-1981a-ObservabilityRedundancy.pdf Stanley G.M. and Mah, R.S.H., "Observability and Redundancy in Process Data Estimation, Chem. Engng. Sci. 36, 259 (1981)]</ref> for these cases with set constraints such as algebraic equations and inequalities. Next, we illustrate some special cases:
|