Content deleted Content added
No edit summary |
m Removing extra spaces between <ref> tags |
||
Line 1:
{{Underlinked|date=March 2019}}
'''Quantum image processing''' (QIMP) is primarily devoted to using [[quantum computing]] and [[quantum information processing]] to create and work with [[Quantum image|quantum images]] <ref name="Venegas-Andraca2005"> {{cite thesis |last= Venegas-Andraca |first= Salvador E.|date= 2005 |title= Discrete Quantum Walks and Quantum Image Processing|type= DPhil thesis|chapter= |publisher= The University of Oxford|docket= |oclc= |url= https://ora.ox.ac.uk/objects/uuid:2baab08b-ee68-4ce5-8e68-8201f086a1ba|access-date=}}</ref>
==Background==
Vlasov's work<ref name="Vlasov Quantum 2003">{{cite journal|last1=Vlasov|first1=A.Y.|year=1997|title=Quantum computations and images recognition|url=https://archive.org/details/arxiv-quant-ph9703010|journal=|volume=|pages=|arxiv=quant-ph/9703010|via=|bibcode=1997quant.ph..3010V}}</ref> in 1997 focused on the use of a quantum system to recognize [[orthogonal images]]. This was followed by efforts using quantum algorithms to search specific patterns in [[Binary image|binary images]]<ref name="Schutzhold Pattern 2003">{{cite journal |title=Pattern recognition on a quantum computer |journal=Physical Review A |volume=67 |issue=6 |pages=062311 |year=2003 |last1=Schutzhold |first1=R.|arxiv=quant-ph/0208063 |doi=10.1103/PhysRevA.67.062311 }}</ref> and detect the posture of certain targets.<ref name="Beach Quantum 2003">{{cite journal |title=Quantum image processing (QuIP) |journal=Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop |pages=39–40 |year=2003 |last1=Beach |first1=G.|last2=Lomont |first2=C.|last3=Cohen |first3=C.|doi=10.1109/AIPR.2003.1284246 |isbn=0-7695-2029-4 }}</ref> Notably, more optics-based interpretation for quantum imaging were initially experimentally demonstrated in <ref>{{cite journal |title=Optical imaging by means of two-photon quantum entanglement |journal=Physical Review A |volume=52 |issue=5 |pages=R3429–R3432 |year=1995 |last1=Pittman |first1=T.B.|last2=Shih |first2=Y.H.|last3=Strekalov |first3=D.V.|bibcode=1995PhRvA..52.3429P |doi=10.1103/PhysRevA.52.R3429 |pmid=9912767 }}</ref> and formalized in <ref name="Lugiato quantum 2002">{{cite journal |title=Quantum imaging |journal=Journal of Optics B |volume=4 |issue=3 |pages=S176–S183 |year=2002 |last1=Lugiato |first1=L.A.|last2=Gatti |first2=A.|last3=Brambilla |first3=E.|doi=10.1088/1464-4266/4/3/372 |bibcode=2002JOptB...4S.176L |arxiv=quant-ph/0203046 }}</ref> after seven years. In 2003, Venegas-Andraca and Bose presented Qubit Lattice, the first published general model for storing, processing and retrieving images using quantum systems <ref name="Venegas-AndracaIJCAI2003"> {{cite journal |title=Quantum Computation and Image Processing: New Trends in Artificial Intelligence |journal=Proceedings of the 2003 IJCAI International Conference on Artificial Intelligence |pages=1563–1564 |year=2003 |last1=Venegas-Andraca |first1=S.E.|last2=Bose|first2=S.|url=https://www.ijcai.org/Proceedings/03/Papers/276.pdf|doi=|isbn= }}</ref>
Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups:<ref name="Yan Quantum 2017"/>
|