Topologies on spaces of linear maps: Difference between revisions

Content deleted Content added
Added info
m Reworded
Line 65:
==== Nets and uniform convergence ====
 
:'''Definition''':{{sfn | Jarchow | 1981 | pp=43-55}} Let {{math|''f'' ∈ ''F''}} and let {{math|1=''f''<sub>•</sub> = (''f''<sub>''i''</sub>)<sub>''i'' ∈ ''I''</sub>}} be a [[Net (mathematics)|net]] in {{mvar|F}}. Then for any subset {{mvar|G}} of {{mvar|T}}, say that {{math|''f''<sub>•</sub>}} '''converges uniformly onto {{mvar|Gf}}''' toon {{mvar|fG}}''' if for every {{math|''N'' ∈ 𝒩}} there exists some {{math|''i''<sub>0</sub> ∈ ''I''}} such that for every {{math|''i'' ∈ ''I''}} satisfying {{math|''i'' ≥ ''i''<sub>0</sub>}}, {{math|''f''<sub>''i''</sub> - ''f'' ∈ 𝒰(''G'', ''N'')}} (or equivalently, {{math|''f''<sub>''i''</sub>(''g'') - ''f'' (''g'') ∈ ''N''}} for every {{math|''g'' ∈ ''G''}}).
 
{{Math theorem|name=Theorem{{sfn | Jarchow | 1981 | pp=43-55}}|math_statement=