Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
→Methods for reducing the sign problem: Wikilink |
||
Line 62:
* [[Meron (physics)|Meron]]-cluster algorithms. These achieve an exponential speed-up by decomposing the fermion world lines into clusters that contribute independently. Cluster algorithms have been developed for certain theories,<ref name='Wiese-cluster'>{{cite journal |doi=10.1103/PhysRevLett.83.3116 |arxiv=cond-mat/9902128 |bibcode=1999PhRvL..83.3116C |title=Meron-Cluster Solution of Fermion Sign Problems |journal=Physical Review Letters |volume=83 |issue=16 |pages=3116–3119 |year=1999 |last1=Chandrasekharan |first1=Shailesh |last2=Wiese |first2=Uwe-Jens}}</ref> but not for the Hubbard model of electrons, nor for [[Quantum chromodynamics|QCD]], the theory of quarks.
* [[Stochastic quantization]]. The sum over configurations is obtained as the equilibrium distribution of states explored by a complex [[Langevin equation]]. So far, the algorithm has been found to evade the sign problem in test models that have a sign problem but do not involve fermions.<ref>{{cite journal |doi=10.1103/PhysRevLett.102.131601 |pmid=19392346 |arxiv=0810.2089 |bibcode=2009PhRvL.102m1601A |title=Can Stochastic Quantization Evade the Sign Problem? The Relativistic Bose Gas at Finite Chemical Potential |journal=Physical Review Letters |volume=102 |issue=13 |pages=131601 |year=2009 |last1=Aarts |first1=Gert}}</ref>
* Fixed-node method. One fixes the ___location of nodes (zeros) of the multiparticle wavefunction, and uses Monte Carlo methods to obtain an estimate of the energy of the ground state, subject to that constraint.<ref>{{cite journal |doi=10.1103/PhysRevLett.72.2442 |pmid=10055881 |bibcode=1994PhRvL..72.2442V |title=Fixed-Node Quantum Monte Carlo Method for Lattice Fermions |journal=Physical Review Letters |volume=72 |issue=15 |pages=2442–2445 |year=1994 |last1=Van Bemmel |first1=H. J. M. |last2=Ten Haaf |first2=D. F. B. |last3=Van Saarloos |first3=W. |last4=Van Leeuwen |first4=J. M. J. |author-link4=Hans van Leeuwen (physicist)
|last5=An |first5=G. |hdl=1887/5478|url=https://openaccess.leidenuniv.nl/bitstream/handle/1887/5478/850_066.pdf?sequence=1 }}</ref> * Majorana algorithms. Using Majorana fermion representation to perform Hubbard-Stratonovich transformations can help to solve the fermion sign problem of a class of fermionic many-body models.<ref>{{cite journal |doi=10.1103/PhysRevB.91.241117 |arxiv=1408.2269 |bibcode=2015PhRvB..91x1117L |title=Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation |journal=Physical Review B |volume=91 |issue=24 |pages=241117 |year=2015 |last1=Li |first1=Zi-Xiang |last2=Jiang |first2=Yi-Fan |last3=Yao |first3=Hong}}</ref><ref>{{Cite journal |doi=10.1103/PhysRevLett.117.267002 |pmid=28059531 |arxiv=1601.05780 |bibcode=2016PhRvL.117z7002L |title=Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations |journal=Physical Review Letters |volume=117 |issue=26 |pages=267002 |year=2016 |last1=Li |first1=Zi-Xiang |last2=Jiang |first2=Yi-Fan |last3=Yao |first3=Hong}}</ref>
|