Content deleted Content added
No edit summary |
|||
Line 26:
It can also be shown that, if an extreme point is not a maximum point of the objective function, then there is an edge containing the point so that the objective function is strictly increasing on the edge moving away from the point.<ref name="Murty137">{{harvtxt|Murty|1983|loc=Section 3.8|p=137}}</ref> If the edge is finite, then the edge connects to another extreme point where the objective function has a greater value, otherwise the objective function is unbounded above on the edge and the linear program has no solution. The simplex algorithm applies this insight by walking along edges of the polytope to extreme points with greater and greater objective values. This continues until the maximum value is reached, or an unbounded edge is visited (concluding that the problem has no solution). The algorithm always terminates because the number of vertices in the polytope is finite; moreover since we jump between vertices always in the same direction (that of the objective function), we hope that the number of vertices visited will be small.<ref name="Murty137"/>
The solution of a linear program is accomplished in two steps. In the first step
== History ==
|