Content deleted Content added
more references |
Expand |
||
Line 12:
The '''Chaperone code''' refers to modifications of molecular chaperones that control protein folding. While the [[genetic code]] specifies how DNA makes proteins, while the [[histone code]] rules genomic transactions, the chaperone code controls how proteins are folded to produce a functional [[proteome]].<ref>{{Cite journal|last=Nitika|last2=Porter|first2=Corey M.|last3=Truman|first3=Andrew W.|last4=Truttmann|first4=Matthias C.|date=2020-07-31|title=Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397107/|journal=The Journal of Biological Chemistry|volume=295|issue=31|pages=10689–10708|doi=10.1074/jbc.REV120.011666|issn=0021-9258|pmc=7397107|pmid=32518165}}</ref><ref>{{Cite journal|last=Backe|first=Sarah J.|last2=Sager|first2=Rebecca A.|last3=Woodford|first3=Mark R.|last4=Makedon|first4=Alan M.|last5=Mollapour|first5=Mehdi|date=2020-08-07|title=Post-translational modifications of Hsp90 and translating the chaperone code|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415980/|journal=The Journal of Biological Chemistry|volume=295|issue=32|pages=11099–11117|doi=10.1074/jbc.REV120.011833|issn=0021-9258|pmc=7415980|pmid=32527727}}</ref>
The chaperone code refers to the combinatorial array of
The chaperone code concept posits that combinations of posttranslational modifications at the surface of chaperones, including phosphorylation, acetylation, methylation, ubiquitination, etc, control protein folding/unfolding and protein complex assembly/disassembly by stipulating substrate specificity, activity, subcellular localization and co-factor binding.
== Phosphorylation ==
Phosphorylation of chaperone proteins can affect their activity. HSP70, a major chaperone protein, was identified in 2012 as a hotspot of phospho-regulation. <ref>{{Cite journal|last=Beltrao|first=Pedro|last2=Albanèse|first2=Véronique|last3=Kenner|first3=Lillian R.|last4=Swaney|first4=Danielle L.|last5=Burlingame|first5=Alma|last6=Villén|first6=Judit|last7=Lim|first7=Wendell A.|last8=Fraser|first8=James S.|last9=Frydman|first9=Judith|last10=Krogan|first10=Nevan J.|date=2012-07-20|title=Systematic Functional Prioritization of Protein Posttranslational Modifications|url=https://www.cell.com/cell/abstract/S0092-8674(12)00706-4|journal=Cell|language=English|volume=150|issue=2|pages=413–425|doi=10.1016/j.cell.2012.05.036|issn=0092-8674|pmid=22817900}}</ref> Subsequently, phosphorylation of chaperone protein [[Hsp70|HSP70]] by a cyclin dependent kinase was shown to be delay cell cycle progression in yeast and mammals by altering Cyclin D1 stability (a key regulator of the cell cycle. <ref>{{Cite journal|last=Truman|first=Andrew W.|last2=Kristjansdottir|first2=Kolbrun|last3=Wolfgeher|first3=Donald|last4=Hasin|first4=Naushaba|last5=Polier|first5=Sigrun|last6=Zhang|first6=Hong|last7=Perrett|first7=Sarah|last8=Prodromou|first8=Chrisostomos|last9=Jones|first9=Gary W.|last10=Kron|first10=Stephen J.|date=2012-12-07|title=CDK-Dependent Hsp70 Phosphorylation Controls G1 Cyclin Abundance and Cell-Cycle Progression|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778871/|journal=Cell|volume=151|issue=6|pages=1308–1318|doi=10.1016/j.cell.2012.10.051|issn=0092-8674|pmc=3778871|pmid=23217712}}</ref>
==References==
|