Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
Mathematical style |
||
Line 11:
:<math>z\frac{d^2w}{dz^2} + (b-z)\frac{dw}{dz} - aw = 0,</math>
with a regular singular point at
Kummer's function of the first kind
:<math>M(a,b,z)=\sum_{n=0}^\infty \frac {a^{(n)} z^n} {b^{(n)} n!}={}_1F_1(a;b;z),</math>
Line 22:
: <math>a^{(n)}=a(a+1)(a+2)\cdots(a+n-1)\, ,</math>
is the [[rising factorial]]. Another common notation for this solution is {{math|Φ(''a'', ''b'', ''z'')}}. Considered as a function of
Some values of
Just as the confluent differential equation is a limit of the [[hypergeometric differential equation]] as the singular point at 1 is moved towards the singular point at ∞, the confluent hypergeometric function can be given as a limit of the [[hypergeometric function]]
Line 32:
and many of the properties of the confluent hypergeometric function are limiting cases of properties of the hypergeometric function.
Since Kummer's equation is second order there must be another, independent, solution. The [[indicial equation]] of the method of Frobenius tells us that the lowest power of a power series solution to the Kummer equation is either 0 or {{math|1 − ''b''}}. If we let {{math|''w''(''z'')}} be
:<math>w(z)=z^{1-b}v(z)</math>
then the differential equation gives
:<math>z^{2-b}\frac{d^2v}{dz^2}+2(1-b)z^{1-b}\frac{dv}{dz}-b(1-b)z^{-b}v + (b-z)\left[z^{1-b}\frac{dv}{dz}+(1-b)z^{-b}v\right] - az^{1-b}v = 0</math>
which, upon dividing out
<!--:<math>z\frac{d^2v}{dz^2}+2(1-b)\frac{dv}{dz}-b(1-b)z^{-1}v + (b-z)\left[\frac{dv}{dz}+(1-b)z^{-1}v\right] - av = 0</math>-->
:<math>z\frac{d^2v}{dz^2}+(2-b-z)\frac{dv}{dz} - (a+1-b)v = 0.</math>
This means that
:<math>U(a,b,z)=\frac{\Gamma(1-b)}{\Gamma(a+1-b)}M(a,b,z)+\frac{\Gamma(b-1)}{\Gamma(a)}z^{1-b}M(a+1-b,2-b,z).</math>
Although this expression is undefined for integer {{mvar|b}}, it has the advantage that it can be extended to any integer {{mvar|b}} by continuity. Unlike Kummer's function which is an [[entire function]] of
Note that the solution
For most combinations of real or complex
:<math>M(a,b,z)\ln z+z^{1-b}\sum_{k=0}^\infty C_kz^k</math>
When ''a'' = 0 we can alternatively use:
:<math>\int_{-\infty}^z(-u)^{-b}e^u\mathrm{d}u.</math>
When
A similar problem occurs when {{math|''a''−''b''}} is a negative integer and
:<math>z^{1-b}M(a+1-b,2-b,z)\ln z+\sum_{k=0}^\infty C_kz^k</math>
Line 60:
:<math>z\frac{d^2w}{dz^2} +(b-z)\frac{dw}{dz} -\left(\sum_{m=0}^M a_m z^m\right)w = 0</math> <ref>{{cite journal|last1=Campos|first1=LMBC|title=On Some Solutions of the Extended Confluent Hypergeometric Differential Equation|journal=Journal of Computational and Applied Mathematics|date=2001|volume=Elsevier|doi=10.1016/s0377-0427(00)00706-8|pages=177–200|doi-access=free}}</ref>
Note that for {{math|''M'' {{=}} 0}} or when the summation involves just one term, it reduces to the conventional Confluent Hypergeometric Equation.
Thus Confluent Hypergeometric Functions can be used to solve "most" second-order ordinary differential equations whose variable coefficients are all linear functions of {{mvar|z}}, because they can be transformed to the Extended Confluent Hypergeometric Equation. Consider the equation:
Line 97:
==Integral representations==
If {{math|Re ''b'' > Re ''a'' > 0}}, {{math|''M''(''a'', ''b'', ''z'')}} can be represented as an integral
:<math>M(a,b,z)= \frac{\Gamma(b)}{\Gamma(a)\Gamma(b-a)}\int_0^1 e^{zu}u^{a-1}(1-u)^{b-a-1}\,du.</math>
thus
:<math>U(a,b,z) = \frac{1}{\Gamma(a)}\int_0^\infty e^{-zt}t^{a-1}(1+t)^{b-a-1}\,dt, \quad (\operatorname{Re}\ a>0) </math>
The integral defines a solution in the right half-plane
They can also be represented as [[Barnes integral]]s
Line 118:
:<math>U(a,b,x)\sim x^{-a} \, _2F_0\left(a,a-b+1;\, ;-\frac 1 x\right),</math>
where <math>_2F_0(\cdot, \cdot; ;-1/x)</math> is a [[generalized hypergeometric series]] with 1 as leading term, which generally converges nowhere, but exists as a [[formal power series]] in {{math|1/''x''}}. This [[asymptotic expansion]] is also valid for complex {{mvar|z}} instead of real
The asymptotic behavior of Kummer's solution for large {{math|{{mabs|''z''
:<math>M(a,b,z)\sim\Gamma(b)\left(\frac{e^zz^{a-b}}{\Gamma(a)}+\frac{(-z)^{-a}}{\Gamma(b-a)}\right)</math>
The powers of {{mvar|z}} are taken using
There is always some solution to Kummer's equation asymptotic to
==Relations==
Line 132:
===Contiguous relations===
Given {{math|''M''(''a'', ''b'', ''z'')}}, the four functions {{math|''M''(''a'' ± 1, ''b'', ''z''), ''M''(''a'', ''b'' ± 1, ''z'')}} are called contiguous to {{math|''M''(''a'', ''b'', ''z'')}}. The function {{math|''M''(''a'', ''b'', ''z'')}} can be written as a linear combination of any two of its contiguous functions, with rational coefficients in terms of {{mvar|a, b}}, and {{mvar|z}}. This gives {{math|1= ({{su|lh=0.8em|p=4|b=2}}) = 6}} relations, given by identifying any two lines on the right hand side of
:<math>\begin{align}
Line 142:
\end{align}</math>
In the notation above, {{math|1=''M'' = ''M''(''a'', ''b'', ''z'')}}, {{math|1= ''M''(''a''+) = ''M''(''a'' + 1, ''b'', ''z'')}}, and so on.
Repeatedly applying these relations gives a linear relation between any three functions of the form {{math|''M''(''a'' + ''m'', ''b'' + ''n'', ''z'')}} (and their higher derivatives), where
There are similar relations for
===Kummer's transformation===
Line 173:
::<math>U(0,c,z)=1</math>
::<math>M(b,b,z)=e^z</math>
::<math>U(a,a,z)=e^z\int_z^\infty u^{-a}e^{-u}du</math> (a polynomial if
::<math>\frac{U(1,b,z)}{\Gamma(b-1)}+\frac{M(1,b,z)}{\Gamma(b)}=z^{1-b}e^z</math>
::<math>M(n,b,z)</math> for non-positive integer
::<math>U(n,c,z)</math> for non-positive integer
::<math>U(c-n,c,z)</math> when
::<math>U(a,a+1,z)= z^{-a}</math>
::<math>U(-n,-2n,z)</math> for non-negative integer
::<math>M(1,2,z)=(e^z-1)/z,\ \ M(1,3,z)=2!(e^z-1-z)/z^2</math> etc.
::Using the contiguous relation <math>aM(a+)=(a+z)M+z(a-b)M(b+)/b</math> we get, for example, <math>M(2,1,z)=(1+z)e^z.</math>
*[[Bateman's function]]
*[[Bessel function]]s and many related functions such as [[Airy function]]s, [[Kelvin function]]s, [[Hankel function]]s. For example, in the special case {{math|''b'' {{=}} 2''a''}} the function reduces to a [[Bessel function]]:
::<math>{}_1F_1(a,2a,x)= e^{
:This identity is sometimes also referred to as [[Ernst Kummer|Kummer's]] second transformation. Similarly
::<math>U(a,2a,x)= \frac{e^
:When {{mvar|a}} is a non-positive integer, this equals
* The [[error function]] can be expressed as
::<math>\mathrm{erf}(x)= \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} dt= \frac{2x}{\sqrt{\pi}}\ {}_1F_1\left(\tfrac{1}{2},\tfrac{3}{2},-x^2\right).</math>
Line 199:
*[[Poisson–Charlier function]]
*[[Toronto function]]s
*[[Whittaker function]]s {{math|''M<sub>κ,μ</sub>''(''z''), ''W<sub>κ,μ</sub>''(''z'')}} are solutions of [[Whittaker's equation]] that can be expressed in terms of Kummer functions
::<math>M_{\kappa,\mu}(z) = e^{-\tfrac{z}{2}} z^{\mu+\tfrac{1}{2}}M\left(\mu-\kappa+\tfrac{1}{2}, 1+2\mu; z\right)</math>
::<math>W_{\kappa,\mu}(z) = e^{-\tfrac{z}{2}} z^{\mu+\tfrac{1}{2}}U\left(\mu-\kappa+\tfrac{1}{2}, 1+2\mu; z\right)</math>
* The general {{mvar|p}}-th raw moment ({{mvar|p}} not necessarily an integer) can be expressed as{{Citation needed|date=March 2017}}
:: <math>\begin{align}
\operatorname{E} \left[\left|N\left(\mu, \sigma^2 \right)\right|^p \right] &= \frac{\left(2 \sigma^2\right)^
\operatorname{E} \left[N \left(\mu, \sigma^2 \right)^p \right] &= \left (-2 \sigma^2\right)^
\end{align}</math>
:In the second formula the function's second [[branch cut]] can be chosen by multiplying with
==Application to continued fractions==
|