Conjugate transpose: Difference between revisions

Content deleted Content added
Put a transpose symbol in sans serif.
General revision throughout the page. Improved inline citations. Rephrased sentences to prevent flow disruption. Put bullet points in sentence case. Minor punctuation fixes. Broken down lengthy sentences. Removed "MathWorld" and "PlanetMath" entries from External Links (inline-cited already).
Line 1:
{{redirect|Adjoint matrix|the transpose of cofactor|Adjugate matrix}}
 
In [[mathematics]], the '''conjugate transpose''' (or '''Hermitian transpose''') of an ''m''-by-''n'' [[matrix (mathematics)|matrix]] <math>\boldsymbol{A}</math> with [[complex number|complex]] entries, is the ''n''-by-''m'' matrix <math>\boldsymbol{A}^\mathrm{H}</math> obtained from <math>\boldsymbol{A}</math> by taking the [[transpose]] and then taking the [[complex conjugate]] of each entry. (Thethe complex conjugate of <math>a+ib</math> isbeing <math>a-ib</math>, for real numbers <math>a</math> and <math>b</math>.). It is often denoted as <math>\boldsymbol{A}^\mathrm{H}</math> or <math>\boldsymbol{A}^*</math>.<ref name=":0">{{Cite web|date=2020-03-25|title=Comprehensive List of Algebra Symbols|url=https://mathvault.ca/hub/higher-math/math-symbols/algebra-symbols/|access-date=2020-09-08|website=Math Vault|language=en-US}}</ref><ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=Conjugate Transpose|url=https://mathworld.wolfram.com/ConjugateTranspose.html|access-date=2020-09-08|website=mathworld.wolfram.com|language=en}}</ref><ref name=":2">{{Cite web|title=conjugate transpose|url=https://planetmath.org/ConjugateTranspose|access-date=2020-09-08|website=planetmath.org}}</ref>
 
For real matrices, the conjugate transpose is just the transpose, <math>\boldsymbol{A}^\mathrm{H} = \boldsymbol{A}^\mathsf{T}</math>.
 
==Definition==
Line 18:
where the subscripts denote the <math>(i,j)</math>-th entry, for <math>1 \le i \le n</math> and <math>1 \le j \le m</math>, and the overbar denotes a scalar complex conjugate.
 
This definition can also be written as<ref name=":2" />
:<math>\boldsymbol{A}^\mathrm{H} = \left(\overline{\boldsymbol{A}}\right)^\mathsf{T} = \overline{\boldsymbol{A}^\mathsf{T}}</math>
 
Line 24:
 
Other names for the conjugate transpose of a matrix are '''Hermitian conjugate''', '''bedaggered matrix''', '''adjoint matrix''' or '''transjugate'''. The conjugate transpose of a matrix <math>\boldsymbol{A}</math> can be denoted by any of these symbols:
* <math>\boldsymbol{A}^*</math>, commonly used in [[linear algebra]]<ref name=":2" />
* <math>\boldsymbol{A}^\mathrm{H}</math>, commonly used in linear algebra<ref name=":0" />
* <math>\boldsymbol{A}^\dagger</math> (sometimes pronounced as ''A [[dagger (typography)|dagger]]''), commonly used in [[quantum mechanics]]
* <math>\boldsymbol{A}^+</math>, although this symbol is more commonly used for the [[Moore–Penrose pseudoinverse]]
Line 42:
A square matrix <math>\boldsymbol{A}</math> with entries <math>a_{ij}</math> is called
* [[hermitian matrix|Hermitian]] or [[self-adjoint_operator|self-adjoint]] if <math>\boldsymbol{A}=\boldsymbol{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = \overline{a_{ji}}</math>&nbsp;.
* [[skew-Hermitian matrix|skewSkew Hermitian]] or antihermitian if <math>\boldsymbol{A}=-\boldsymbol{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = -\overline{a_{ji}}</math>&nbsp;.
* [[normal matrix|normalNormal]] if <math>\boldsymbol{A}^\mathrm{H} \boldsymbol{A} = \boldsymbol{A} \boldsymbol{A}^\mathrm{H}</math>.
* [[Unitary matrix|unitaryUnitary]] if <math>\boldsymbol{A}^\mathrm{H} = \boldsymbol{A}^{-1}</math>, equivalently <math>\boldsymbol{A}\boldsymbol{A}^\mathrm{H} = \boldsymbol{I}</math>, equivalently <math>\boldsymbol{A}^\mathrm{H}\boldsymbol{A} = \boldsymbol{I}</math>.
 
Even if <math>\boldsymbol{A}</math> is not square, the two matrices <math>\boldsymbol{A}^\mathrm{H}\boldsymbol{A}</math> and <math>\boldsymbol{A}\boldsymbol{A}^\mathrm{H}</math> are both Hermitian and in fact [[positive-definite matrix|positive semi-definite matrices]].
Line 56:
:<math>a + ib \equiv \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.</math>
 
That is, denoting each ''complex'' number ''z'' by the ''real'' 2&times;2 matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''z''-multiplication on <math>\mathbb{C}</math>.
 
AnTHus, an ''m''-by-''n'' matrix of complex numbers could therefore equallybe well be represented by a 2''m''-by-2''n'' matrix of real numbers. The conjugate transpose therefore arises very naturally as the result of simply transposing such a matrix, whenmatrix—when viewed back again as ''n''-by-''m'' matrix made up of complex numbers.
 
==Properties of the conjugate transpose==
* <math>(\boldsymbol{A} + \boldsymbol{B})^\mathrm{H} = \boldsymbol{A}^\mathrm{H} + \boldsymbol{B}^\mathrm{H}</math> for any two matrices <math>\boldsymbol{A}</math> and <math>\boldsymbol{B}</math> of the same dimensions.
* <math>(z\boldsymbol{A})^\mathrm{H} = \overline{z} \boldsymbol{A}^\mathrm{H}</math> for any complex number <math>z</math> and any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>.
* <math>(\boldsymbol{A}\boldsymbol{B})^\mathrm{H} = \boldsymbol{B}^\mathrm{H} \boldsymbol{A}^\mathrm{H}</math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math> and any ''n''-by-''p'' matrix <math>\boldsymbol{B}</math>. Note that the order of the factors is reversed.<ref name=":1" />
* <math>(\boldsymbol{A}^\mathrm{H})^\mathrm{H} = \boldsymbol{A}</math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>, i.e. Hermitian transposition is an [[Involution (mathematics)|involution]].
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\operatorname{det}(\boldsymbol{A}^\mathrm{H}) = \overline{\operatorname{det}(\boldsymbol{A})}</math> where <math>\operatorname{det}(A)</math> denotes the [[determinant]] of <math>\boldsymbol{A}</math> .
Line 83:
==External links==
* {{springer|title=Adjoint matrix|id=p/a010850}}
* {{MathWorld | urlname=ConjugateTranspose | title=Conjugate Transpose}}
* {{planetmath reference|id=4382|title=Conjugate transpose}}
 
[[Category:Linear algebra]]