Content deleted Content added
Added reference [3] and its result |
Removed utterly false claim FCC and HCP are dual lattices. Hell, HCP is not even a lattice at all. |
||
Line 22:
</math>
where the vectors <math>u_i</math> are chosen to satisfy <math>\langle u_i, v_j \rangle = \delta_{ij}</math>. That is, if the vectors <math>u_i</math> form columns of a matrix <math>A</math> and <math>v_i</math> the columns of a matrix <math>B</math>, then <math>A=B^{-T}</math>. An example of a sampling lattice in two dimensional space is a [[hexagonal lattice]] depicted in Figure 1. The corresponding reciprocal lattice is shown in Figure 2. The reciprocal lattice of a [[square lattice]] in two dimensions is another square lattice. In three dimensional space the reciprocal lattice of a
[[Close-packing of equal spheres#FCC_and_HCP_Lattices|face-centered cubic (FCC) lattice]] is
==The theorem==
|