Explicit formulae for L-functions: Difference between revisions

Content deleted Content added
Line 84:
for the divisor function of zeroth order <math> \sum_{n=1}^\infty \sigma_0 (n) f(n) = \sum_ {m=-\infty}^\infty \sum_{n=1}^\infty f(mn) </math>
 
using a test function of the form <math> f(xeye^{x})e^{ax} </math> for some positive 'a' turns the poisson summation formula into a formula involving the Mellin transform , here 'y' is a real parameter
 
==Generalizations==