Symbolic method (combinatorics): Difference between revisions

Content deleted Content added
Set: obsolete and ugly format replaced
Multiset: format
Line 56:
 
This leads to the relation
:<math>\begin{matrixalign} A(z) &{} = & \prod_{\beta \in \mathcal{B}} (1 - z^{|\beta|})^{-1} \\
&{} = & \prod_{n = 1}^{\infty} (1 - z^{n})^{-B_{n}} \\
&{} = & \exp \left ( \ln \prod_{n = 1}^{\infty} (1 - z^{n})^{-B_{n}} \right ) \\
&{} = & \exp \left ( \sum_{n=1}^{\infty}-B_{n} \ln (1 - z^{n}) \right ) \\
&{} = & \exp \left ( \sum_{k=1}^{\infty} \frac{B(z^{k})}{k} \right )
\end{matrixalign}
</math>