Content deleted Content added
m convert special characters (via WP:JWB) |
m →Example: clean up the notation |
||
Line 24:
== Example ==
Suppose that <math> k \in \mathbb{N} </math>. Let <math> \mathbf{x}_{k} = (x_{1k}, x_{2k}) \in \mathbb{R}^{2} </math> and <math> \mathbf{y}_{k} = (y_{1k}, y_{2k}, y_{3k}) \in \mathbb{R}^{3} </math> be two
: <math> \alpha_{k} \, \mathbf{x}_{k} = \mathbf{A} \, \mathbf{y}_{k}
where <math> \alpha_{k} \neq 0 </math> is the unknown scalar factor related to equation ''k''.
Line 36:
and multiply both sides of the equation with <math> \mathbf{x}_{k}^{T} \, \mathbf{H} </math> from the left
:<math> \begin{align}
:<math> \alpha_{k} \, \mathbf{x}_{k}^{T} \, \mathbf{H} \, \mathbf{x}_{k} = \mathbf{x}_{k}^{T} \, \mathbf{H} \, \mathbf{A} \, \mathbf{y}_{k} </math> for <math> \, k = 1, \ldots, N .</math>▼
(\mathbf{x}_{k}^{T} \, \mathbf{H}) \, \alpha_{k} \, \mathbf{x}_{k} &= (\mathbf{x}_{k}^{T} \, \mathbf{H}) \, \mathbf{A} \, \mathbf{y}_{k} \\
▲
\end{align}
</math>
Since <math> \mathbf{x}_{k}^{T} \, \mathbf{H} \, \mathbf{x}_{k} = 0, </math> the following homogeneous equations, which no longer contain the unknown scalars, are at hand
: <math>
In order to solve <math> \mathbf{A} </math> from this set of equations, consider the elements of the vectors <math> \mathbf{x}_{k} </math> and <math> \mathbf{y}_{k} </math> and matrix <math> \mathbf{A} </math>:
|