Content-based image retrieval: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: template type. Add: eprint, class, year, url, s2cid, author pars. 1-1. Removed URL that duplicated unique identifier. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked
WikiCleanerBot (talk | contribs)
m v2.03b - Bot T20 CW#61 - WP:WCW project (Reference before punctuation)
Line 114:
== Vulnerabilities, attacks and defenses ==
 
Like other tasks in [[computer vision]] such as recognition and detection, recent neural network based retrieval algorithms are susceptible to [[generative adversarial network | adversarial attacks]], both as candidate and the query attacks.<ref name="Zhou Niu Wang Zhang 2020">{{cite arXiv | last1=Zhou | first1=Mo | last2=Niu | first2=Zhenxing | last3=Wang | first3=Le | last4=Zhang | first4=Qilin | last5=Hua | first5=Gang | title=Adversarial Ranking Attack and Defense | year=2020 | class=cs.CV | eprint=2002.11293v2 }}</ref>. It is shown that retrieved ranking could be dramatically altered with only small perturbations imperceptible to human beings. In addition, model-agnostic transferable adversarial examples are also possible, which enables black-box adversarial attacks on deep ranking systems without requiring access to their underlying implementations.<ref name="Zhou Niu Wang Zhang 2020">{{cite arXiv | last1=Zhou | first1=Mo | last2=Niu | first2=Zhenxing | last3=Wang | first3=Le | last4=Zhang | first4=Qilin | last5=Hua | first5=Gang | title=Adversarial Ranking Attack and Defense | year=2020 | class=cs.CV | eprint=2002.11293v2 }}</ref><ref name="Li Ji Liu Hong pp. 4899–4908">{{cite web | last1=Li | first1=Jie | last2=Ji | first2=Rongrong | last3=Liu | first3=Hong | last4=Hong | first4=Xiaopeng | last5=Gao | first5=Yue | last6=Tian | first6=Qi | title=Universal Perturbation Attack Against Image Retrieval | website=International Conference on Computer Vision (ICCV 2019) | url=https://openaccess.thecvf.com/content_ICCV_2019/html/Li_Universal_Perturbation_Attack_Against_Image_Retrieval_ICCV_2019_paper.html | pages=4899–4908}}</ref>.
 
Conversely, the resistance to such attacks can be improved via adversarial defenses such as the Madry defense.<ref name="Madry Makelov Schmidt Tsipras 2017">{{cite arXiv | last1=Madry | first1=Aleksander | last2=Makelov | first2=Aleksandar | last3=Schmidt | first3=Ludwig | last4=Tsipras | first4=Dimitris | last5=Vladu | first5=Adrian | title=Towards Deep Learning Models Resistant to Adversarial Attacks | date=2017-06-19 | class=stat.ML | eprint=1706.06083v4 }}</ref>.