Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: isbn, pages, volume, doi, series, chapter, s2cid, author pars. 1-3. Removed URL that duplicated unique identifier. Formatted dashes. | You can use this bot yourself. Report bugs here. | Activated by AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked |
Citation bot (talk | contribs) Add: s2cid. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | Category:Integrated circuits | via #UCB_Category 46/189 |
||
Line 1:
A '''field-programmable analog array''' ('''FPAA''') is an [[Integrated circuit|integrated circuit device]] containing computational [[Analog signal|analog]] blocks (CAB)<ref>{{cite journal |last1=Hall |first1=Tyson |last2=Twigg |first2=Christopher |last3=Hassler |first3=Paul |last4=Anderson |first4=David |title=APPLICATION PERFORMANCE OF ELEMENTS IN A FLOATING–GATE FPAA |journal=IEEE-Iscas 2004 |date=2004 |volume=II |pages=589–592}}</ref><ref>{{cite journal |last1=Baskaya |first1=F. |last2=Reddy |first2=S. |last3=Sung |first3=Kyu Lim |last4=Anderson |first4=D.V. |title=Placement for large-scale floating-gate field-programable analog arrays |journal=IEEE Transactions on VLSI Systems |date=August 2006|volume=14 |issue=8 |pages=906–910 |url=https://www.computer.org/csdl/trans/si/2006/08/01664910-abs.html|doi=10.1109/TVLSI.2006.878477 |s2cid=16583629 }}</ref> and interconnects between these blocks offering [[field-programmability]]. Unlike their [[Digital signal|digital]] cousin, the [[Field-programmable gate array|FPGA]], the devices tend to be more application driven than general purpose as they may be [[Current-mode logic|current mode]] or voltage mode devices. For voltage mode devices, each block usually contains an [[operational amplifier]] in combination with programmable configuration of passive components. The blocks can, for example, act as [[Analog adder|summers]] or [[integrator]]s.
FPAAs usually operate in one of two modes: [[Discrete time and continuous time|''continuous time'' and ''discrete time'']].
Line 8:
== History ==
The term FPAA was first used in 1991 by Lee and Gulak.<ref name="1 Lee and Gulak">{{cite document|title=A CMOS Field-programmable analog array," Solid-State Circuits|doi=10.1109/4.104162}}</ref> They put forward the concept of CABs that are connected via a routing network and configured digitally. Subsequently, in 1992<ref name="2 Lee and Gulak">{{cite document|title=Field programmable analogue array based on MOSFET transconductors|s2cid=15702616}}</ref> and 1995<ref name="3 Lee and Gulak">{{cite book|title=A transconductor-based field programmable analog array|chapter=A transconductor-based field-programmable analog array|doi=10.1109/ISSCC.1995.535521|isbn=0-7803-2495-1|year=1995|last1=Lee|first1=E.K.F.|last2=Gulak|first2=P.G.|pages=198–199|s2cid=56613166}}</ref> they further elaborated the concept with the inclusion of op-amps, capacitors, and resistors. This original chip was manufactured using 1.2 µm CMOS technology and operates in the 20 kHz range at a power consumption of 80 mW.
Pierzchala et al introduced a similar concept named '''electronically-programmable analog circuit''' ('''EPAC''').<ref name="4 Pierzchala">{{cite book|title=Current Mode amplifier/integrator for field programmable analog array|chapter=Current-mode amplifier/Integrator for a field-programmable analog array|doi=10.1109/ISSCC.1995.535520|isbn=0-7803-2495-1|year=1995|last1=Pierzchala|first1=E.|last2=Perkowski|first2=M.A.|last3=Van Halen|first3=P.|last4=Schaumann|first4=R.|pages=196–197|s2cid=60724962}}</ref> It featured only a single integrator. However, they proposed a local interconnect [[Network architecture|architecture]] in order to try and avoid the bandwidth limitations.
The '''reconfigurable analog signal processor''' ('''RASP''') and a second version were introduced in 2002 by Hall et al.<ref name="6 Hall">{{cite book|title=Field Programmable Analog Arrays: A Floating-Gate Approach|chapter=Field-Programmable Analog Arrays: A Floating—Gate Approach|series=Lecture Notes in Computer Science|year=2002|doi=10.1007/3-540-46117-5_45|s2cid=596774|last1=Hall|first1=Tyson S.|last2=Hasler|first2=Paul|last3=Anderson|first3=David V.|volume=2438|pages=424–433|isbn=978-3-540-44108-3}}</ref><ref name="7 Hall">{{cite journal|title=Large scale field programmable analog arrays for analog signal processing|doi=10.1109/TCSI.2005.853401|year=2005|last1=Hall|first1=T.S.|last2=Twigg|first2=C.M.|last3=Gray|first3=J.D.|last4=Hasler|first4=P.|last5=Anderson|first5=D.V.|journal=IEEE Transactions on Circuits and Systems I: Regular Papers|volume=52|issue=11|pages=2298–2307|s2cid=1148361}}</ref> Their design incorporated high-level elements such as second order [[Band-pass filter|bandpass filters]] and 4 by 4 vector matrix multipliers into the CABs. Because of its architecture, it is limited to around 100 kHz and the chip itself is not able to support independent reconfiguration.
In 2004 Joachim Becker picked up the [[parallel connection]] of OTAs (operational transconductance amplifiers) and proposed its use in a hexagonal local interconnection architecture.<ref name="8 Becker">{{cite journal|title=.,"A continuous-time field programmable analog array (FPAA) consisting of digitally reconfigurable GM-cells|citeseerx = 10.1.1.444.8748}}</ref> It did not require a routing network and eliminated switching the signal path that enhances the frequency response.
Line 18:
In 2005 Fabian Henrici worked with Joachim Becker to develop a switchable and invertible OTA which doubled the maximum FPAA bandwidth.<ref name="9 Becker">{{cite journal|title=A Continuous-Time Hexagonal Field-Programmable Analog Array in 0.13 µm CMOS with 186MHz GBW|citeseerx = 10.1.1.444.8748}}</ref> This collaboration resulted in the first manufactured FPAA in a [[130 nanometer|0.13 µm]] [[CMOS]] technology.
In 2016 Dr. Jennifer Hasler from Georgia Tech. university designed a FPAA System on Chip that uses analog technology to achieve unprecedented power and size reductions.<ref name="11 Hasler">{{cite document|title=A Programmable and Configurable Mixed-Mode FPAA SoC, Jennifer Hasler et al., Georgia Tech., January 7, 2016|doi=10.1109/TVLSI.2015.2504119|s2cid=14027246}}</ref>
==See also==
|