Stretched exponential function: Difference between revisions

Content deleted Content added
Comma.
m No need for "space" character between citation numbers.
Line 18:
| url = http://gallica.bnf.fr/ark:/12148/bpt6k15176w.pagination| doi = 10.1002/andp.18541670103
| bibcode = 1854AnP...167...56K
}}.</ref> thus it is also known as the '''Kohlrausch function'''. In 1970, G. Williams and D.C. Watts used the [[Fourier transform]] of the stretched exponential to describe [[dielectric spectroscopy|dielectric spectra]] of polymers;<ref>{{cite journal
}}.</ref>
thus it is also known as the '''Kohlrausch function'''. In 1970, G. Williams and D.C. Watts used the [[Fourier transform]] of the stretched exponential to describe [[dielectric spectroscopy|dielectric spectra]] of polymers;<ref>{{cite journal
|author1=Williams, G. |author2=Watts, D. C.
|name-list-style=amp | year = 1970
Line 27 ⟶ 26:
| pages = 80–85
| doi = 10.1039/tf9706600080
}}.</ref> in this context, the stretched exponential or its Fourier transform are also called the '''Kohlrausch–Williams–Watts (KWW) function'''.
}}.</ref>
in this context, the stretched exponential or its Fourier transform are also called the '''Kohlrausch–Williams–Watts (KWW) function'''.
 
In phenomenological applications, it is often not clear whether the stretched exponential function should be used to describe the differential or the integral distribution function—or to neither.
Line 48 ⟶ 46:
| title = Stretched exponential decay of the spin-correlation function in the kinetic Ising model below the critical temperature
|bibcode = 1988PhRvB..37.3716T |doi = 10.1103/PhysRevB.37.3716 | pmid = 9944981
}}</ref><ref>{{cite journal
<ref>{{cite journal
| author = Shore, John E. and Zwanzig, Robert
| journal = The Journal of Chemical Physics
Line 58 ⟶ 55:
| title = Dielectric relaxation and dynamic susceptibility of a one-dimensional model for perpendicular-dipole polymers
|doi = 10.1063/1.431279| bibcode = 1975JChPh..63.5445S
}}</ref><ref>{{cite journal
<ref>{{cite journal
| author = Brey, J. J. and Prados, A.
| journal = Physica A
Line 68 ⟶ 64:
| title = Stretched exponential decay at intermediate times in the one-dimentional Ising model at low temperatures
|doi = 10.1016/0378-4371(93)90015-V| bibcode = 1993PhyA..197..569B
}}</ref> it can be shown that the asymptotic decay is a stretched exponential, but the prefactor is usually an unrelated power.
}}</ref>
it can be shown that the asymptotic decay is a stretched exponential, but the prefactor is usually an unrelated power.
 
== Mathematical properties ==
Line 82 ⟶ 77:
where Γ is the [[gamma function]]. For exponential decay, 〈''τ''〉&nbsp;=&nbsp;''τ''<sub>''K''</sub> is recovered.
 
The higher [[moment (mathematics)|moments]] of the stretched exponential function are<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik |chapter=3.478. |page=372}}</ref>
The higher [[moment (mathematics)|moments]] of the stretched exponential function are
<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik |chapter=3.478. |page=372}}</ref>
 
: <math>\langle\tau^n\rangle \equiv \int_0^\infty dt\, t^{n-1}\, e^{-(t/\tau_K)^\beta} = {{\tau_K}^n \over \beta }\Gamma \left({n \over \beta }\right).</math>
Line 182 ⟶ 176:
| doi = 10.1103/PhysRevB.44.7306
| pmid = 9998642
|bibcode = 1991PhRvB..44.7306A }}</ref> though nowadays the numeric computation can be done so efficiently<ref>{{cite journal
though nowadays the numeric computation can be done so efficiently<ref>{{cite journal
| author = Wuttke, J.
| year = 2012
Line 226 ⟶ 219:
| author = Sornette, D.
| year = 2004
| title = Critical Phenomena in Natural Science: Chaos, Fractals, Self-organization, and Disorder}}.</ref> have been known to use the name "stretched exponential" to refer to the [[Weibull distribution]].
have been known to use the name "stretched exponential" to refer to the [[Weibull distribution]].
 
=== Modified functions ===
Line 243 ⟶ 235:
| doi = 10.1007/s10522-008-9156-4|pmid=18560989
|s2cid=8554128
}}</ref><ref>
<ref>
{{cite journal
| author = B. M. Weon