Content deleted Content added
NeedsGlasses (talk | contribs) m inlined refs |
NeedsGlasses (talk | contribs) m added missing author |
||
Line 1:
In [[computational chemistry]] and [[computational physics]], the '''embedded atom model''', '''embedded-atom method''' or '''EAM''', is an approximation describing the energy between atoms,
an [[interatomic potential]]. The energy is a function of a sum of functions of the separation between an atom and its neighbors. In the original model, by Murray Daw and Mike Baskes,<ref>{{cite journal|last=Daw|first=Murray S.|author2=Mike Baskes|title=Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals|journal=[[Physical Review B]]|publisher=[[American Physical Society]]|volume=29|issue=12|pages=6443–6453|doi=10.1103/PhysRevB.29.6443|year=1984|bibcode = 1984PhRvB..29.6443D }}</ref> the latter functions represent the electron density. EAM is related to the second moment approximation to [[tight binding (physics)|tight binding]] theory, also known as the Finnis-Sinclair model. These models are particularly appropriate for metallic systems.<ref>{{cite journal|doi=10.1016/0920-2307(93)90001-U|last=Daw|first=Murray S.|
==Model simulation==
|