Graph kernel: Difference between revisions

Content deleted Content added
m space
intro
Line 1:
{{About|machine learning|the graph-theoretical notion|Glossary of graph theory}}
 
In [[structure mining]], a ___domain of learning on structured data objects in [[machine learning]], a '''graph kernel''' is a [[Positive-definite kernel|kernel function]] that computes an [[inner product space|inner product]] on [[Graph (abstract data type)|graphs]].<ref name="Vishwanathan">{{cite journal|title=Graph kernels|author1=S.V. N. Vishwanathan|author2=Nicol N. Schraudolph|author3=Risi Kondor|author4=Karsten M. Borgwardt|journal=[[Journal of Machine Learning Research]]|volume=11|pages=1201–1242|year=2010|url=http://jmlr.csail.mit.edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf}}</ref>
|title=Graph kernels
|author1=S.V. N. Vishwanathan
|author2=Nicol N. Schraudolph
|author3=Risi Kondor
|author4=Karsten M. Borgwardt
|journal=[[Journal of Machine Learning Research]]
|volume=11
|pages=1201–1242
|year=2010
|url=http://jmlr.csail.mit.edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
}}</ref>
Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs. They allow [[Kernel trick|kernelized]] learning algorithms such as [[support vector machine]]s to work directly on graphs, without having to do [[feature extraction]] to transform them to fixed-length, real-valued [[feature vector]]s. They find applications in [[bioinformatics]], in [[chemoinformatics]] (as a type of [[molecule kernel]]s<ref name="Ralaivola2005">{{cite journal |author1=L. Ralaivola |author2=S. J. Swamidass |author3=H. Saigo |author4=P. Baldi |title=Graph kernels for chemical informatics |journal=Neural Networks |year=2005 |volume=18 |issue=8 |pages=1093–1110 |doi=10.1016/j.neunet.2005.07.009|pmid=16157471 }}</ref>), and in [[social network analysis]].<ref name="Vishwanathan"/>