Content deleted Content added
m Removed extra 1 from the last paragraph |
Citation bot (talk | contribs) Alter: edition. Add: pages, s2cid, bibcode, arxiv, doi, isbn, volume, author pars. 1-1. Removed parameters. Formatted dashes. Some additions/deletions were actually parameter name changes. Correct ISBN10 to ISBN13. | You can use this bot yourself. Report bugs here. | Suggested by Grimes2 | Category:CS1 maint: extra text | via #UCB_Category 13/33 |
||
Line 10:
A [[complexity class]] is a collection of [[computational problem]]s that can be solved by a computational model under certain resource constraints. For instance, the complexity class [[P (complexity)|P]] is defined as the set of problems solvable by a [[Turing machine]] in [[polynomial time]]. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the [[quantum computer|quantum circuit model]] or the equivalent [[quantum Turing machine]]. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as [[P (complexity)|P]], [[NP (complexity)|NP]], [[BPP (complexity)|BPP]], and [[PSPACE]].
One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].<ref name=":02">{{Cite journal|last=Vazirani|first=Umesh V.|date=2002|title=A survey of quantum complexity theory|url=http://dx.doi.org/10.1090/psapm/058/1922899|journal=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}</ref><ref name=":3">{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary
Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are <math>O(T(n))</math>, <math>\Omega(T(n))</math>, and <math>\Theta(T(n))</math>. <math>O(T(n))</math> expresses that something is bounded above by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, <math>\Omega(T(n))</math> expresses that something is bounded below by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, and <math>\Theta(T(n))</math> expresses both <math>O(T(n))</math> and <math>\Omega(T(n))</math>.<ref name=":1">{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|volume=|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}</ref> These notations also their own names. <math>O(T(n))</math> is called [[Big O notation]], <math>\Omega(T(n))</math> is called Big Omega notation, and <math>\Theta(T(n))</math> is called Big Theta notation.
== Complexity Classes Overview ==
Some important complexity classes are P, BPP, BQP, PP, and P-Space. To define these we first define a promise problem. A promise problem is a decision problem which has an input assumed to be selected from the set of all possible input strings. A promise problem is a pair <math>A=(A_{yes},A_{no})</math>. <math>A_{yes}</math> is the set of yes instances, <math>A_{no}</math> is the set of no instances, and the intersection of these sets is such that <math>A_{yes}\cap A_{no}=\emptyset</math>. All of the previous complexity classes contain promise problems.<ref name=":2">{{Cite journal|last=Watrous|first=John|date=2008-04-21|title=Quantum Computational Complexity|url=http://arxiv.org/abs/0804.3401|journal=arXiv:0804.3401 [quant-ph]|arxiv=0804.3401}}</ref>
{| class="wikitable"
|+
Line 22:
|-
|P
|Promise problems for which a polynomial time deterministic Turing machine accepts all strings in <math>A_{yes}</math> and rejects all strings in <math>A_{no}</math><ref name=":22">{{Cite journal|last=Watrous|first=John|date=2008-04-21|title=Quantum Computational Complexity|url=http://arxiv.org/abs/0804.3401|journal=arXiv:0804.3401 [quant-ph]|arxiv=0804.3401}}</ref>
|-
|BPP
|Promise problems for which a polynomial time Probabilistic Turing machine accepts every string in <math>A_{yes}</math> with a probability of at least <math>\frac{2}{3}</math>, and accepts every string in <math>A_{no}</math> with a probability of at most <math>\frac{1}{3}</math><ref name=":23">{{Cite journal|last=Watrous|first=John|date=2008-04-21|title=Quantum Computational Complexity|url=http://arxiv.org/abs/0804.3401|journal=arXiv:0804.3401 [quant-ph]|arxiv=0804.3401}}</ref>
|-
|BQP
|Promise problems such that for functions <math>a,b:\mathbb {N}\rightarrow[0,1]</math>, there exists a polynomial time generated family of quantum circuits <math>Q={\{Q_n:n\in \mathbb{N}\}}</math>, where <math>Q_n</math> is a circuit which accepts <math>n</math> qubits and gives an output of one qubit. An element <math>x</math> of <math>A_{yes}</math> is accepted by <math>Q</math> with a probability greater than or equal to <math>a(\left \vert x \right \vert) </math>. An element <math>x</math> of <math>A_{no}</math> is accepted by <math>Q</math> with a probability less than or equal to <math>b(\left \vert x\right \vert)</math>. <ref name=":24">{{Cite journal|last=Watrous|first=John|date=2008-04-21|title=Quantum Computational Complexity|url=http://arxiv.org/abs/0804.3401|journal=arXiv:0804.3401 [quant-ph]|arxiv=0804.3401}}</ref>
|-
|PP
|Promise problems for which a polynomial time Probabilistic Turing machine accepts every string in <math>A_{yes}</math> with a probability greater than <math>\frac{1}{2}</math>, and accepts every string in <math>A_{no}</math> with a probability of at most <math>\frac{1}{2}</math><ref name=":25">{{Cite journal|last=Watrous|first=John|date=2008-04-21|title=Quantum Computational Complexity|url=http://arxiv.org/abs/0804.3401|journal=arXiv:0804.3401 [quant-ph]|arxiv=0804.3401}}</ref>
|-
|P-SPACE
|Promise problems for which a deterministic Turing machine, that runs in polynomial space, accepts every string in <math>A_{yes}</math> and rejects all strings in <math>A_{no}</math><ref name=":26">{{Cite journal|last=Watrous|first=John|date=2008-04-21|title=Quantum Computational Complexity|url=http://arxiv.org/abs/0804.3401|journal=arXiv:0804.3401 [quant-ph]|arxiv=0804.3401}}</ref>
|}
Line 74:
== Simulating Quantum Circuits ==
There is no known way to efficiently simulate a quantum computational model with a classical computer. This means that a classical computer cannot simulate a quantum computational model in polynomial time. However, a [[quantum circuit]] of <math>S(n)</math> qubits with <math>T(n)</math> quantum gates can be simulated by a classical circuit with <math>O(2^{S(n)}T(n)^3)</math> [[Logic gate|classical gates]].<ref name=":12">{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory|volume=|pages=103–127|publisher=WORLD SCIENTIFIC|doi=10.1142/9789810248185_0004|arxiv=quant-ph/9906111|bibcode=2000qcqi.book..103C|isbn=978-981-02-4117-9|s2cid=958695|access-date=October 10, 2020}}</ref> This number of classical gates is obtained by determining how many bit operations are necessary to simulate the quantum circuit. In order to do this, first the amplitudes associated with the <math>S(n)</math> qubits must be accounted for. Each of the the states of the <math>S(n)</math> qubits can be described by a two-dimensional complex vector, or a state vector. These state vectors can also be described a [[linear combination]] of its [[Euclidean vector|component vectors]] with coefficients called amplitudes. These amplitudes are complex numbers which are normalized to one, meaning the sum of the squares of the absolute values of the amplitudes must be one.<ref name=":12" /> The entries of the state vector are these amplitudes. Which entry each of the amplitudes are correspond to the none-zero component of the component vector which they are the coefficients of in the linear combination description. As an equation this is described as <math>\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}</math> or <math>\alpha \left \vert 1 \right \rangle + \beta \left \vert 0 \right \rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}</math> using [[Bra–ket notation|Dirac notation]]. The state of the entire <math>S(n)</math> qubit system can be described by a single state vector. This state vector describing the entire system is the tensor product of the state vectors describing the individual qubits in the system. The result of the tensor products of the <math>S(n)</math> qubits is a single state vector which has <math>2^{S(n)}</math> dimensions and entries that are the amplitudes associated with each basis state or component vector. Therefore, <math>2^{S(n)}</math>amplitudes must be accounted for with a <math>2^{S(n)}</math> dimensional complex vector which is the state vector for the <math>S(n)</math> qubit system.<ref>{{Cite journal|
==Quantum Query Complexity ==
Line 83:
==== Adjacency Matrix Model ====
When considering quantum computation of the solution to directed directed graph problems, there are two important query models to understand. First, there is the adjacency matrix model, where the graph of the solution is given by the adjacency matrix: <math>M \in \{0,1\}a^{n\Chi n} </math>, with <math>M_{ij}=1 </math>, if and only if <math>(v_{i},v_{j})\in E </math>. <ref name=":0">{{Cite journal|
==== Adjacency Array Model ====
Line 124:
==== Deutsch-Jozsa Algorithm ====
The Deutsch-Jozsa algorithm is a quantum algorithm designed to solve a toy problem with a smaller query complexity than is possible with a classical algorithm. The toy problem asks whether a function <math>f:\{0,1\}^n\rightarrow\{0,1\}</math> is constant or balanced, those being the only two possibilities.<ref name=":32">{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary
==See also==
|