Content deleted Content added
m Duplicate word removed |
m Task 18 (cosmetic): eval 13 templates: del empty params (7×); hyphenate params (1×); del |url-status= (1×); |
||
Line 12:
One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern [[Church–Turing thesis|Church-Turing thesis]]. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a [[probabilistic Turing machine]].<ref name=":02">{{Cite journal|last=Vazirani|first=Umesh V.|date=2002|title=A survey of quantum complexity theory|url=http://dx.doi.org/10.1090/psapm/058/1922899|journal=Proceedings of Symposia in Applied Mathematics|volume=58|pages=193–217|doi=10.1090/psapm/058/1922899|isbn=9780821820841|issn=2324-7088}}</ref><ref name=":32">{{Cite book|last=Nielsen, Michael A., 1974-|url=https://www.worldcat.org/oclc/665137861|title=Quantum computation and quantum information|date=2010|publisher=Cambridge University Press|others=Chuang, Isaac L., 1968-|isbn=978-1-107-00217-3|edition=10th anniversary|___location=Cambridge|oclc=665137861}}</ref> However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold. It may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.<ref name=":02" />
Both quantum computational complexity of functions and classical computational complexity of functions are often expressed with [[asymptotic notation]]. Some common forms of asymptotic notion of functions are <math>O(T(n))</math>, <math>\Omega(T(n))</math>, and <math>\Theta(T(n))</math>. <math>O(T(n))</math> expresses that something is bounded above by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, <math>\Omega(T(n))</math> expresses that something is bounded below by <math>cT(n)</math> where <math>c</math> is a constant such that <math>c>0</math> and <math>T(n)</math> is a function of <math>n</math>, and <math>\Theta(T(n))</math> expresses both <math>O(T(n))</math> and <math>\Omega(T(n))</math>.<ref name=":12">{{Citation|last=Cleve|first=Richard|title=An Introduction to Quantum Complexity Theory|date=2000|url=http://dx.doi.org/10.1142/9789810248185_0004|work=Quantum Computation and Quantum Information Theory
== Complexity Classes Overview ==
Line 80:
=== Query Models of Directed Graphs ===
One type of problem that quantum computing can make easier to solve are graph problems. If we are to consider the amount of queries to a graph that are required to solve a given problem, let us first consider the most common types of graphs, called [[directed graph]]s, that are associated with this type of computational modelling. In brief, directed graphs are graphs where all edges between vertices are unidirectional. Directed graphs are formally defined as the graph <math>G=(N,E)</math>, where N is the set of vertices, or nodes, and E is the set of edges.<ref>{{Cite web|last=Nykamp|first=D.Q.
==== Adjacency Matrix Model ====
Line 121:
==== Grover's Algorithm ====
An example depicting the power of quantum computing is [[Grover's algorithm]] for searching unstructured databases. The algorithm's quantum query complexity is <math display="inline">O{\left(\sqrt{N}\right)}</math>, a quadratic improvement over the best possible classical query complexity <math>O(N)</math>, which is a [[linear search]]. While Grover's algorithm is more optimized than the best possible classical algorithm, we know that Grover's algorithm is not one hundred percent optimal.<ref>{{Cite journal|last=Ambainis|first=Andris|date=October 28, 2005|title=Polynomial degree vs. quantum query complexity|url=https://linkinghub.elsevier.com/retrieve/pii/S0022000005000899|journal=Journal of Computer and System Sciences|language=en|volume=72|issue=2|pages=220–238|doi=10.1016/j.jcss.2005.06.006
==== Deutsch-Jozsa Algorithm ====
Line 137:
* {{cite book | author1-link= Michael Nielsen| author1=Nielsen, Michael |author2-link = Isaac L. Chuang |author2=Chuang, Isaac |title=Quantum Computation and Quantum Information | title-link=Quantum Computation and Quantum Information |publisher=Cambridge University Press |___location=Cambridge |year=2000 |isbn=978-0-521-63503-5 |oclc= 174527496}}
* {{cite book |last1=Arora |first1=Sanjeev|author1-link=Sanjeev Arora |last2=Barak |first2=Boaz|author2-link=Boaz Barak |title=Computational Complexity: A Modern Approach |url=https://archive.org/details/computationalcom00aror |url-access=limited |date=2016 |publisher=Cambridge University Press |isbn=978-0-521-42426-4 |pages=[https://archive.org/details/computationalcom00aror/page/n226 201]–236}}
* {{cite arXiv|eprint=0804.3401v1|author1=John Watrous|
* Watrous J. (2009) [https://link.springer.com/referencework/10.1007/978-0-387-30440-3 Quantum Computational Complexity]. In: Meyers R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY
|