Content deleted Content added
→A misconception about Cantor's work: Small change in wording |
→A misconception about Cantor's work: Very small wording change |
||
Line 415:
== A misconception about Cantor's work ==
[[Akihiro Kanamori]], who specializes in set theory,
Cantor's published proof and the reverse-order proof both use the theorem: Given a sequence of reals, a real can found that is not in the sequence. By applying this theorem to the sequence of real algebraic numbers, Cantor produced a transcendental number. He then proved that the reals are uncountable: Assume that there is a sequence containing all the reals. Applying the theorem to this sequence produces a real not in the sequence, contradicting the assumption that the sequence contains all the reals. Hence, the reals are uncountable.<ref name=Ewald840_841/> The reverse-order proof starts by first proving the reals are uncountable. It then proves that transcendental numbers exist: If there were no transcendental numbers, all the reals would be algebraic and hence countable, which contradicts what was just proved. This contradiction proves that transcendental numbers exist without constructing any.<ref name=Kanamori4/>
|