Content deleted Content added
No edit summary |
|||
Line 34:
(Note: the <math>d\theta</math> in the diagram refers to the small angle, not the [[arclength|arc length]]. The arc length is <math display="inline">R\ d\theta</math>.)
Applying [[Newton's Universal Law of Gravitation]], the sum of the forces due to the mass elements in the shaded band is<blockquote><math>dF = \frac{Gm \;dM}{s^2}</math></blockquote>However, since there is partial cancellation due to the [[Euclidean vector|vector]] nature of the force in conjunction with the circular band's symmetry, the leftover [[Vector (geometry)#Vector components|component]] (in the direction pointing towards <math>m</math>) is given by<blockquote><math>dF_r = \frac{Gm \;dM}{s^2} \cos\
{{block indent|<math>F_r = \int dF_r</math>}}
Line 40:
Since <math>G</math> and <math>m</math> are constants, they may be taken out of the integral:
{{block indent|<math>F_r = Gm \int \frac{\cos\
To evaluate this integral, one must first express <math>dM</math> as a function of <math>d\theta</math>
Line 52:
and
{{block indent|<math>F_r = \frac{GMm}{2} \int \frac{\sin\theta \cos\
By the [[law of cosines]],
{{block indent|<math>\cos\
and
Line 62:
{{block indent|<math>\cos\theta = \frac{r^2 + R^2 - s^2}{2rR}.</math>}}
These two relations link the three parameters <math>\theta</math>, <math>\
[[File:Shell-diag-1-anim.gif|center]]
Line 80:
It follows that
{{block indent|<math>F_r = \frac{GMm}{2} \frac{1}{rR} \int \frac{s\cos\
where the new integration variable <math>s</math> increases from <math>r-R</math> to <math>r+R</math> .
Inserting the expression for <math>\cos \
{{block indent|<math>F_r = \frac{GMm}{4r^2 R} \int \left( 1 + \frac{r^2 - R^2}{s^2} \right)\ ds\ .</math>}}
Line 191:
so:
{{block indent|<math>F_r = \frac{GMm}{2 \pi} \int \frac{ \sin^2
where <math>M=\pi R^2 \rho</math>, and <math>\rho</math> is the density of the body.
|