Microarray analysis techniques: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
Citation bot (talk | contribs)
Add: bibcode, s2cid. | You can use this bot yourself. Report bugs here. | Suggested by Abductive | via #UCB_webform 38/497
Line 22:
 
===Identification of significant differential expression===
Many strategies exist to identify array probes that show an unusual level of over-expression or under-expression. The simplest one is to call "significant" any probe that differs by an average of at least twofold between treatment groups. More sophisticated approaches are often related to [[t-test]]s or other mechanisms that take both effect size and variability into account. Curiously, the p-values associated with particular genes do not reproduce well between replicate experiments, and lists generated by straight fold change perform much better.<ref>{{cite journal |vauthors=Shi L, Reid LH, Jones WD, etal |title=The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1151–61 |year=2006 |pmid=16964229 |doi=10.1038/nbt1239 |pmc=3272078}}</ref><ref>{{cite journal |vauthors=Guo L, Lobenhofer EK, Wang C, etal |title=Rat toxicogenomic study reveals analytical consistency across microarray platforms |journal=Nat. Biotechnol. |volume=24 |issue=9 |pages=1162–9 |year=2006 |pmid=17061323 |doi=10.1038/nbt1238|s2cid=8192240 }}</ref> This represents an extremely important observation, since the point of performing experiments has to do with predicting general behavior. The MAQC group recommends using a fold change assessment plus a non-stringent p-value cutoff, further pointing out that changes in the background correction and scaling process have only a minimal impact on the rank order of fold change differences, but a substantial impact on p-values.
 
=== Clustering ===
Line 29:
==== Hierarchical clustering ====
{{main|Hierarchical clustering}}
Hierarchical clustering is a statistical method for finding relatively [[Homogeneity and heterogeneity#Homogeneity|homogeneous]] clusters. Hierarchical clustering consists of two separate phases. Initially, a [[distance matrix]] containing all the pairwise distances between the genes is calculated. [[Pearson product-moment correlation coefficient|Pearson’s correlation]] and [[Spearman's rank correlation coefficient|Spearman’s correlation]] are often used as dissimilarity estimates, but other methods, like [[Taxicab geometry|Manhattan distance]] or [[Euclidean distance]], can also be applied. Given the number of distance measures available and their influence in the clustering algorithm results, several studies have compared and evaluated different distance measures for the clustering of microarray data, considering their intrinsic properties and robustness to noise.<ref name=Gentleman>{{cite book|last1=Gentleman|first1=Robert|title=Bioinformatics and computational biology solutions using R and Bioconductor|date=2005|publisher=Springer Science+Business Media|___location=New York|isbn=978-0-387-29362-2|display-authors=etal}}</ref><ref name=Jaskowiak2013>{{cite journal|last1=Jaskowiak|first1=Pablo A.|last2=Campello|first2=Ricardo J.G.B.|last3=Costa|first3=Ivan G.|title=Proximity Measures for Clustering Gene Expression Microarray Data: A Validation Methodology and a Comparative Analysis|journal=IEEE/ACM Transactions on Computational Biology and Bioinformatics|volume=10|issue=4|pages=845–857|doi=10.1109/TCBB.2013.9|pmid=24334380|year=2013|s2cid=760277}}</ref><ref name=Jaskowiak2014>{{cite journal|last1=Jaskowiak|first1=Pablo A|last2=Campello|first2=Ricardo JGB|last3=Costa|first3=Ivan G|title=On the selection of appropriate distances for gene expression data clustering|journal=BMC Bioinformatics|volume=15|issue=Suppl 2|pages=S2|doi=10.1186/1471-2105-15-S2-S2|pmid=24564555|pmc=4072854|year=2014}}</ref> After calculation of the initial distance matrix, the hierarchical clustering algorithm either (A) joins iteratively the two closest clusters starting from single data points (agglomerative, bottom-up approach, which is fairly more commonly used), or (B) partitions clusters iteratively starting from the complete set (divisive, top-down approach). After each step, a new distance matrix between the newly formed clusters and the other clusters is recalculated. Hierarchical cluster analysis methods include:
 
*Single linkage (minimum method, nearest neighbor)
Line 131:
==References==
{{reflist|refs=
<ref name="R6">{{cite journal | last1 = Tusher | first1 = V. G. | last2 = Tibshirani | first2 = R. | display-authors =et al | year = 2001 | title = Significance analysis of microarrays applied to the ionizing radiation response | url = http://www-stat.stanford.edu/~tibs/SAM/pnassam.pdf | journal = Proceedings of the National Academy of Sciences | volume = 98 | issue = 9| pages = 5116–5121 | doi=10.1073/pnas.091062498| pmid = 11309499 | pmc = 33173 | bibcode = 2001PNAS...98.5116G }}</ref>
<ref name="R7">{{cite journal | last1 = Zang | first1 = S. | last2 = Guo | first2 = R. | display-authors = et al | year = 2007 | title = Integration of statistical inference methods and a novel control measure to improve sensitivity and specificity of data analysis in expression profiling studies | url = | journal = Journal of Biomedical Informatics | volume = 40 | issue = 5| pages = 552–560 | doi=10.1016/j.jbi.2007.01.002| pmid = 17317331 }}</ref>
}}