Content deleted Content added
Line 33:
[[Image:Rp examples740.gif|thumb|center|740px|Typical examples of recurrence plots (top row: [[time series]] (plotted over time); bottom row: corresponding recurrence plots). From left to right: uncorrelated stochastic data ([[white noise]]), [[harmonic oscillation]] with two frequencies, chaotic data with linear trend ([[logistic map]]) and data from an [[autoregressive process|auto-regressive process]].]]
The small-scale structures in RPs are used by the [[recurrence quantification analysis]] (Zbilut & Webber 1992; Marwan et al. 2002). This quantification allows us to describe the RPs in a quantitative way and to study transitions or nonlinear parameters of the system. In contrast to the heuristic approach of the recurrence quantification analysis, which depends on the choice of the embedding parameters, some [[dynamical invariant]]s as [[correlation dimension]], [[K2 entropy]] or [[mutual information]], which are independent on the embedding, can also be derived from recurrence plots. The base for these dynamical invariants are the recurrence rate and the distribution of the lengths of the diagonal lines.
Close returns plots are similar to recurrence plots. The difference is that the relative time between recurrences is used for the <math>y</math>-axis (instead of absolute time).
|