Content deleted Content added
m Task 18 (cosmetic): eval 14 templates: del empty params (5×); hyphenate params (2×); |
|||
Line 1:
A '''radial basis function''' ('''RBF''') is a [[real-valued function]] <math display="inline">\varphi</math> whose value depends only on the distance between the input and some fixed point, either the [[Origin (mathematics)|origin]], so that <math display="inline">\varphi(\mathbf{x}) = \varphi(\left\|\mathbf{x}\right\|)</math>, or some other fixed point <math display="inline">\mathbf{c}</math>, called a ''center'', so that <math display="inline">\varphi(\mathbf{x}) = \varphi(\left\|\mathbf{x}-\mathbf{c}\right\|)</math>. Any function <math display="inline">\varphi</math> that satisfies the property <math display="inline">\varphi(\mathbf{x}) = \varphi(\left\|\mathbf{x}\right\|)</math> is a [[radial function]]. The distance is usually [[Euclidean distance]], although other [[distance function|metric]]s are sometimes used. They are often used as a collection <math>\{ \varphi_k \}_k</math>which forms a [[Basis (linear algebra)|basis]] for some [[function space]] of interest, hence the name.
Sums of radial basis functions are typically used to [[function approximation|approximate given functions]]. This approximation process can also be interpreted as a simple kind of [[artificial neural network|neural network]]; this was the context in which they were originally applied to machine learning, in work by [[David Broomhead]] and David Lowe in 1988,<ref>[http://www.anc.ed.ac.uk/rbf/intro/node8.html Radial Basis Function networks] {{webarchive|url=https://web.archive.org/web/20140423232029/http://www.anc.ed.ac.uk/rbf/intro/node8.html |date=2014-04-23 }}</ref><ref>{{cite journal |first = David H. |last = Broomhead |first2 = David |last2 = Lowe |title = Multivariable Functional Interpolation and Adaptive Networks |journal = Complex Systems |volume = 2 |pages = 321–355 |year = 1988 |url = https://www.complex-systems.com/pdf/02-3-5.pdf |
RBFs are also used as a [[Radial basis function kernel|kernel]] in [[support vector machine|support vector classification]].<ref>{{cite web |url=https://beta.oreilly.com/learning/intro-to-svm |title=Introduction to Support Vector Machines |last=VanderPlas |first=Jake |publisher=[O'Reilly] |date=6 May 2015
== Definition ==
Line 86:
== Further reading ==
{{more footnotes|date=June 2013}}
*{{cite journal|last1=Hardy|first1=R.L.|year=1971|title=Multiquadric equations of topography and other irregular surfaces
* {{cite journal | last1 = Hardy | first1 = R.L. | year = 1990 | title = Theory and applications of the multiquadric-biharmonic method, 20 years of Discovery, 1968 1988
* {{Citation |last1 = Press |first1 = WH |last2 = Teukolsky |first2 = SA |last3 = Vetterling |first3 = WT |last4 = Flannery |first4 = BP |year = 2007 |title = Numerical Recipes: The Art of Scientific Computing |edition = 3rd |publisher = Cambridge University Press| ___location=New York |isbn = 978-0-521-88068-8 |chapter = Section 3.7.1. Radial Basis Function Interpolation|chapter-url=http://apps.nrbook.com/empanel/index.html?pg=139 }}
* Sirayanone, S., 1988, Comparative studies of kriging, multiquadric-biharmonic, and other methods for solving mineral resource problems, PhD. Dissertation, Dept. of Earth Sciences, Iowa State University, Ames, Iowa.
* {{cite journal | last1 = Sirayanone | first1 = S. | last2 = Hardy | first2 = R.L. | year = 1995 | title = The Multiquadric-biharmonic Method as Used for Mineral Resources, Meteorological, and Other Applications
[[Category:Artificial neural networks]]
|