Content deleted Content added
→Exchangeability and the i.i.d. statistical model: Don't need repeated link, and should define abbreviation the first time the longform is used. |
m Task 18 (cosmetic): eval 7 templates: del empty params (2×); hyphenate params (2×); del |ref=harv (2×); |
||
Line 15:
* Chow, Yuan Shih and Teicher, Henry, ''Probability theory. Independence, interchangeability, martingales,'' Springer Texts in Statistics, 3rd ed., Springer, New York, 1997. xxii+488 pp. {{ISBN|0-387-98228-0}}</ref><ref>Aldous, David J., ''Exchangeability and related topics'', in: École d'Été de Probabilités de Saint-Flour XIII — 1983, Lecture Notes in Math. 1117, pp. 1–198, Springer, Berlin, 1985. {{ISBN|978-3-540-15203-3}} {{doi|10.1007/BFb0099421}}</ref>
(A sequence ''E''<sub>1</sub>, ''E''<sub>2</sub>, ''E''<sub>3</sub>, ... of events is said to be exchangeable precisely if the sequence of its [[indicator function]]s is exchangeable.) The distribution function ''F''<sub>''X''<sub>1</sub>,...,''X''<sub>''n''</sub></sub>(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>) of a finite sequence of exchangeable random variables is symmetric in its arguments {{nowrap|''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>.}} [[Olav Kallenberg]] provided an appropriate definition of exchangeability for continuous-time stochastic processes.<ref>{{cite journal | last=Diaconis| first=Persi |
== History ==
Line 69:
We can then solve the inequality for the covariance yielding the stated lower bound. The non-negativity of the covariance for the infinite sequence can then be obtained as a limiting result from this finite sequence result.
Equality of the lower bound for finite sequences is achieved in a simple urn model: An urn contains 1 red marble and ''n'' − 1 green marbles, and these are sampled without replacement until the urn is empty. Let ''X''<sub>''i''</sub> = 1 if the red marble is drawn on the ''i''-th trial and 0 otherwise. A finite sequence that achieves the lower covariance bound cannot be extended to a longer exchangeable sequence.<ref>{{cite book|title=Limit theorems for sums of exchangeable random variables|first1=Robert Lee|last1=Taylor|first2=Peter Z.|last2=Daffer|first3=Ronald F.|last3=Patterson
== Examples ==
Line 98:
* {{cite book |last=Borovskikh | first=Yu. V. | title=''U''-statistics in Banach spaces | publisher=VSP | ___location=Utrecht | year=1996 | pages=xii+420 | isbn=90-6764-200-2 | mr=1419498 }}
* Chow, Yuan Shih and Teicher, Henry, ''Probability theory. Independence, interchangeability, martingales,'' Springer Texts in Statistics, 3rd ed., Springer, New York, 1997. xxii+488 pp. {{ISBN|0-387-98228-0}}
* {{cite journal | last=Diaconis| first=Persi |
* [[Olav Kallenberg|Kallenberg, O.]], ''Probabilistic symmetries and invariance principles''. Springer-Verlag, New York (2005). 510 pp. {{ISBN|0-387-25115-4}}.
* Kingman, J. F. C., ''Uses of exchangeability'', Ann. Probability 6 (1978) 83–197 {{MR|494344}} {{JSTOR|2243211}}
* O'Neill, B. (2009) Exchangeability, Correlation and Bayes' Effect. ''International Statistical Review'' '''77(2)''', pp. 241–250. {{ISBN|978-3-540-15203-3}} {{doi|10.1111/j.1751-5823.2008.00059.x}}
* {{cite book|title=Limit theorems for sums of exchangeable random variables|first1=Robert Lee|last1=Taylor|first2=Peter Z.|last2=Daffer|first3=Ronald F.|last3=Patterson
* Zabell, S. L. (1988) "Symmetry and its discontents", in Skyrms, B. & Harper, W. L. ''Causation, Chance and Credence, ''pp''155-190, Kluwer
* {{ cite journal | author=— | title=Predicting the unpredictable | year=1992 | journal=Synthese | volume=90 | issue=2 | page=205 | doi=10.1007/bf00485351}}
|