Content deleted Content added
Lilianmm87 (talk | contribs) |
Lilianmm87 (talk | contribs) |
||
Line 784:
==== Order 2 SLL-RK schemes ====
[[File:Figure SSDE4.png|thumb|
For SDEs with a single Wiener noise ''(m=1''''')''' <ref name=":4" />
<math>\mathbf{y}_{t_{n+1}}=\mathbf{y}_{n}+\widetilde{\mathbf{\phi }}(t_{n},\mathbf{
y}_{n};h_{n})+\frac{h_{n}}{2}\left( \mathbf{k}_{1}+\mathbf{k}_{2}\right)
<math>\quad \quad \quad +
\mathbf{g}\left( t_{n}\right) \Delta w_{n}+\frac{\left( \mathbf{g}\left(
t_{n+1}\right) -\mathbf{g}\left( t_{n}\right) \right) }{h_{n}}J_{\left(
0,1\right) } \
where
<math>\mathbf{k}_{1} =\mathbf{f}(t_{n}+\frac{h_{n}}{2},\mathbf{y}_{n}+\widetilde{
\mathbf{\phi }}(t_{n},\mathbf{y}_{n};\frac{h_{n}}{2})+\gamma _{+})
</math>
<math> \quad \quad -\mathbf{f}
_{\mathbf{x}}(t_{n},\mathbf{y}_{n})\widetilde{\mathbf{\phi }}(t_{n},\mathbf{y
}_{n};\frac{h_{n}}{2})-\mathbf{f}\left( t_{n},\mathbf{y}_{n}\right)
f}_{t}\left( t_{n},\mathbf{y}_{n}\right) \frac{h_{n}}{2}, ▼
<math> \quad \quad -\mathbf{
</math><math>\mathbf{k}_{2} =\mathbf{f}(t_{n}+\frac{h_{n}}{2},\mathbf{y}_{n}+\widetilde{▼
<math> \quad \quad -\mathbf{f}
_{\mathbf{x}}(t_{n},\mathbf{y}_{n})\widetilde{\mathbf{\phi }}(t_{n},\mathbf{y
}_{n};\frac{h_{n}}{2})-\mathbf{f}\left( t_{n},\mathbf{y}_{n}\right)
<math>\quad \quad -\mathbf{
f}_{t}\left( t_{n},\mathbf{y}_{n}\right) \frac{h_{n}}{2},</math>
with <math>\gamma _{\pm }=\frac{1}{h_{n}}\mathbf{g}\left( t_{n}\right) \Bigl(
\widetilde{J}_{\left( 1,0\right) }\pm \sqrt{2\widetilde{J}_{\left(1,1,0\right) }h_{n}-
\widetilde{J}_{\left( 1,0\right) }^{2}} \Bigr) </math>.
\widetilde{J}_{\left( 1,0\right) }^{2}} \Bigr) </math>. Here, <math>\widetilde{\mathbf{\phi }}(t_{n},\mathbf{y}_{n};h_{n})=\mathbf{L}(\mathbf{P}_{p,q}(2^{-k_{n}}\mathbf{M}_{n}h_{n}))^{2^{k_{n}}}\mathbf{r} </math> for low dimensional SDEs, and <math>\widetilde{\mathbf{\phi }}(t_{n},\mathbf{y}_{n};h_{n})=\mathbf{L\mathbf{k}}_{m_{n},k_{n}}^{p,q}(h_{n},\mathbf{M}_{n}, \mathbf{r}) </math> for large systems of SDEs, where <math>\mathbf{M}_{n} </math>, <math>\mathbf{L} </math>, <math>\mathbf{r} </math>, <math>\Delta \mathbf{w}_{n}^{i} </math> and <math>\widetilde{J}_{\alpha } </math> are defined as in the order-'''2''' SLL-Taylor schemes, ''p+q>1'' and <math>m_{n}>2 </math>.▼
▲
==== Stability and dynamics <ref name=":4" /><ref name=":5">de la Cruz H.; Jimenez J.C.; Zubelli J.P. (2017). "Locally Linearized methods for the simulation of stochastic oscillators driven by random forces". BIT Numer. Math. 57: 123–151. [http://doi.org:10.1007%2Fs10543-016-0620-2 doi:10.1007/s10543-016-0620-2]. S2CID 124662762.</ref>====
|