Local linearization method: Difference between revisions

Content deleted Content added
Line 340:
\mathbf{k}_{j}\qquad and \qquad \widehat{\mathbf{y}}_{n+1}=\mathbf{y}
_{n}+\mathbf{u}_{s}+h_{n}\sum_{j=1}^{s}\widehat{b}_{j}\mathbf{k}_{j},\quad </math>
<ref name=":15">Jimenez J.C.; Sotolongo A.; Sanchez-Bornot J.M. (2014). "Locally Linearized Runge Kutta method of Dormand and Prince". Appl. Math. Comput. 247: 589–606. arXiv:1209.1415. [https[doi://doi.org//10.1016%2Fj/j.amc.2014.09.001. |doi:10.1016/j.amc.2014.09.001.]] S2CID 205423380.</ref> <ref name=":16"> Naranjo-Noda, Jimenez J.C. (2021) "Locally Linearized Runge_Kutta method of Dormand and Prince for Large systemas of initial value problems." J.Comput. Physics. [https://doi.org/10.1016%2Fj.jcp.2020.109946. doi:10.1016/j.jcp.2020.109946.] </ref>
<math>\qquad \qquad (4.9)</math>
</div>