Local zeta function: Difference between revisions

Content deleted Content added
No edit summary
mNo edit summary
Line 3:
:<math>Z(V, s) = \exp\left(\sum_{m = 1}^\infty \frac{N_m}{m} (q^{-s})^m\right)</math>
 
where {{math|''N''<sub>''m''</sub>}} is the number of points of {{mvar|''V''}} defined over the finite field extension {{math|'''F'''<sub>''q''<sup>''m''</sup></sub>}} of {{math|'''F'''<sub>''q''</sub>,}} and {{mvar|V}} is a [[non-singular]] {{mvar|n}}-dimensional [[projective algebraic variety]] over the field {{math|'''F'''<sub>''q''</sub>}} with {{mvar|q}} elements. ByMaking the variable transformation {{math|''u''&nbsp;{{=}}&nbsp;''q''<sup>−''s''</sup>,}} then it is defined bygives
:<math>
\mathit{Z} (V,u) = \exp
\left( \sum_{m=1}^{\infty} N_m \frac{u^m}{m} \right)
</math>
as the [[formal power series]] ofin the variable <math>u</math>.
 
Equivalently, the local zeta function sometimes is sometimes defined as follows:
:<math>
(1)\ \ \mathit{Z} (V,0) = 1 \,
Line 17:
(2)\ \ \frac{d}{du} \log \mathit{Z} (V,u) = \sum_{m=1}^{\infty} N_m u^{m-1}\ .</math>
 
In other wordwords, the local zeta function {{math|''Z''(''V'',&nbsp;''u'')}} with coefficients in the [[finite field]] {{math|'''F'''<sub>''q''</sub>}} is defined as a function whose [[logarithmic derivative]] generates the numbersnumber {{math|''N''<sub>''m''</sub>}} of the solutions of the equation, defining {{mvar|V}}, in the degree {{mvar|m}} degree extension {{math|'''F'''<sub>''q''<sup>''m''</sup></sub>.}}
 
<!--In [[number theory]], a '''local zeta-function'''