Normalizing constant: Difference between revisions

Content deleted Content added
Line 32:
Similarly,
 
:<math>\sum_{n=0}^\infty \frac{\lambda^n}{n!}=e^{-\lambda} ,</math>
 
and consequently
 
:<math>f(n)=\frac{\lambda^n e^{-\lambda}}{n!} </math>
 
is a probability mass function on the set of all nonnegative integers.<ref>Feller, 1968, p. 156.</ref> This is the probability mass function of the [[Poisson distribution]] with expected value &lambda;.