Content deleted Content added
→Log-concave distributions: Fixed capitalisation of "Hyperbolic secant distribution" for consistency with the other distributions listed |
m Task 18 (cosmetic): eval 8 templates: rep cmtd params (1×); del empty params (3×); hyphenate params (4×); |
||
Line 25:
* A twice differentiable, nonnegative function with a convex ___domain is log-concave if and only if for all {{math|''x''}} satisfying {{math|''f''(''x'') > 0}},
::<math>f(x)\nabla^2f(x) \preceq \nabla f(x)\nabla f(x)^T</math>,<ref name=":0">{{cite book |first=Stephen |last=Boyd |
:i.e.
Line 66:
*The [[chi distribution]].
*The [[hyperbolic secant distribution]].
*The [[Wishart distribution]], where ''n'' >= ''p'' + 1.<ref name="prekopa">{{cite journal | last1 = Prékopa | first1 = András | year = 1971 | title = Logarithmic concave measures with application to stochastic programming
*The [[Dirichlet distribution]], where all parameters are >= 1.<ref name="prekopa"/>
*The [[gamma distribution]] if the shape parameter is >= 1.
Line 104:
==References==
* {{cite book|
* {{cite book|title=Unimodality, convexity, and applications
|last1=Dharmadhikari|first1=Sudhakar
Line 116:
* {{cite book|title=Parametric Statistical Theory | last1=Pfanzagl | first1=Johann
|
|last2=with the assistance of R. Hamböker
|year=1994|publisher=Walter de Gruyter
Line 122:
|mr=1291393}}
* {{cite book|title=Convex functions, partial orderings, and statistical applications|last1=Pečarić|first1=Josip E.|last2=Proschan|first2=Frank|last3=Tong|first3=Y. L.
|series=Mathematics in Science and Engineering|volume=187
|publisher=Academic Press, Inc.
|